Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(2x-3y\right)^{10}+\left|4x-3z\right|+\left|x^2+y^2+z^2-116\right|=0\)
Mà \(\hept{\begin{cases}\left(2x-3y\right)^{10}\ge0\\\left|4x-3z\right|\ge0\\x^2+y^2+z^2-116\ge0\end{cases}}\)
\(\Rightarrow\left(2x-3y\right)^{10}+\left|4x-3z\right|+\left|x^2+y^2+z^2-116\right|\ge0\)
Dấu '=" xảy ra khi và chỉ khi:
\(\hept{\begin{cases}2x-3y=0\\4x-3z=0\\x^2+y^2+z^2-116=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=3y\\4x=3z\\x^2+y^2+z^2=116\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{x}{3}=\frac{z}{4}\\x^2+y^2+z^2=116\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}=\frac{z}{4}\\x^2+y^2+z^2=116\left(1\right)\end{cases}}\)
Đặt \(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}=k\)
\(\Rightarrow x=3k;y=2k;z=4k\)
Thay vào (1) ta được:
\(\left(3k\right)^2+\left(2k\right)^2+\left(4k\right)^2=116\)
\(\Rightarrow9k^2+4k^2+16k^2=116\)
\(\Rightarrow k^2\left(9+4+16\right)=116\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=2\left(h\right)k=-2\)
Thay vào tìm được \(x=-6;y=-4;z=-8\left(h\right)x=6;y=4;z=8\)
ta có : \(\frac{x}{10}=\frac{y}{5}=\frac{x}{20}=\frac{y}{10}\)
\(\frac{y}{2}=\frac{z}{3}=\frac{y}{10}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{15}\)
\(\Rightarrow\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{60}=\frac{2x-3y+4z}{40-30+60}=\frac{330}{70}\)
rồi từ đó tìm x;y;z
Ta có : \(\frac{x}{10}=\frac{y}{5};\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{10}=\frac{z}{15}=\frac{2x-3y+4z}{40-30+60}=\frac{330}{70}=\frac{33}{7}\)
\(x=\frac{660}{7};y=\frac{330}{7};z=\frac{495}{7}\)
`7x=3y`
`=>x/y=3/7`
`=>x/3=y/7`
Mà `x-y=10` nên áp dụng dãy tỉ số bằng nhau ta có
`x/3=y/7=(x-y)/(3-7)=10/(-4)=-5/2`
`=>x/3=-5/2=>x=-15/2`
`=>y/7=-5/2=>y=-35/2`
b) \(\text{Ta có}:\frac{x}{5}=\frac{y}{2}\Leftrightarrow5y=2x\Leftrightarrow y=\frac{2x}{5}\)
Thay \(y=\frac{2x}{5}\)biểu thức \(2x-2y=44\).Ta được :
\(2x-2.\frac{2x}{5}=44\Leftrightarrow10x-4x=220\Leftrightarrow6x=220\Leftrightarrow x=\frac{110}{3}\)
Với \(x=\frac{110}{3}\Rightarrow y=\frac{\frac{2.110}{3}}{5}=\frac{44}{3}\)
c) \(2x=3y\Rightarrow x=\frac{3y}{2}\)
Thay vào biểu thức \(x+y=10\), ta được :
\(\frac{3y}{2}+y=10\Leftrightarrow3y+2y=20\Leftrightarrow5y=20\Leftrightarrow y=4\)
\(\Rightarrow x=\frac{3.4}{2}=6\)
\(\frac{x}{4}=\frac{y}{6}=\frac{x+y}{4+6}=\frac{90}{10}=9\)
\(\Rightarrow\hept{\begin{cases}x=9\cdot4=36\\y=9\cdot6=63\end{cases}}\)
đây là mình làm tắt.
ở trường chắc bạn học dạng này rồi đúng ko?
hai phần kia làm tương tự bạn nhé!
hai gọc so le trong là 2 góc ở vị trí so le trong
2 góc này đc tạo bởi 2 đường thẳng song song và đường thẳng thứ 3 cắt 2 đường thẳng đó
như thế này nè
cái tròn đó là vị trí 2 góc so le trong
\(x^2+y^2+10=2\left(x-3y\right)\\ \Rightarrow x^2+y^2+10=2x-6y\\ \Rightarrow\left(x^2-2x+1\right)+\left(y^2+6y+9\right)=0\\ \Rightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)
Ta có:
`(x-1)^2>=0` với mọi x
`(y+3)^2>=0` với mọi y
`=>(x-1)^2+(y+3)^2>=0` với mọi x,y
Mặt khác: `(x-1)^2+(y+3)^2=0`
`=>x-1=0` và `y+3=0`
`=>x=1` và `y=-3`