Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3(x2 + x)2 – 2(x2 + x) – 1 = 0. Đặt t = x2 + x, ta có:
3t2 – 2t – 1 = 0; t1 = 1, t2 =
Với t1 = 1, ta có: x2 + x = 1 hay x2 + x – 1 = 0, ∆ = 4 + 1 = 5, √∆ = √5
x1 = , x2 =
Với t2 = , ta có: x2 + x = hay 3x2 + 3x + 1 = 0:
Phương trình vô nghiệm, vì ∆ = 9 – 4 . 3 . 1 = -3 < 0
Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =
b) (x2 – 4x + 2)2 + x2 – 4x – 4 = 0
Đặt t = x2 – 4x + 2, ta có phương trình t2 + t – 6 = 0
Giải ra ta được t1 = 2, t2 = -3.
- Với t1 = 2 ta có: x2 – 4x + 2 = 2 hay x2 – 4x = 0. Suy ra x1 = 0, x2 = 4.
- Với t1 = -3, ta có: x2 – 4x + 2 = -3 hay x2 – 4x + 5 = 0.
Phương trình này vô nghiệm vì ∆ = (-4)2 – 4 . 1 . 5 = 16 – 20 = -4 < 0
Vậy phương trình đã cho có hai nghiệm: x1 = 0, x2 = 4.
c) x - √x = 5√x + 7 ⇔ x - 6√x – 7 = 0. Điều kiện: x ≥ 0. Đặt t = √x, t ≥ 0
Ta có: t2 – 6t – 7 = 0. Suy ra: t1 = -1 (loại), t2 = 7
Với t = 7, ta có: √x = 7. Suy ra x = 49.
Vậy phương trình đã cho có một nghiệm: x = 49
d) – 10 . = 3. Điều kiện: x ≠ -1, x ≠ 0
Đặt = t, ta có: = . Vậy ta có phương trình: t - – 3 = 0
hay: t2 – 3t – 10 = 0. Suy ra t1 = 5, t2 = -2.
- Với t1 = 5, ta có = 5 hay x = 5x + 5. Suy ra x =
- Với t2 = -2, ta có = -2 hay x = -2x – 2. Suy ra x = .
Vậy phương trình đã cho có hai nghiệm: x1 = , x2 =
a) đặc \(x^2=t\left(t\ge0\right)\)
pt \(\Leftrightarrow\) \(t^2-8t-9=0\)
\(\Delta'=\left(-4\right)^2-1\left(-9\right)\) = \(16+9=25>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(t_1=\dfrac{4+\sqrt{25}}{1}=9\left(tmđk\right)\)
\(t_2=\dfrac{4-\sqrt{25}}{1}=-1\left(loại\right)\)
\(t=x^2=9\) \(\Leftrightarrow\) \(x=\pm9\)
vậy \(x=\pm9\)
a, Đặt \(x^2-2x=t\)
Phương trình đã cho trở thành:
\(2t^2+3t+1=0\)
Có a-b+c = 2-3+1 = 0
=> Phương trình có 2 nghiệm: \(t_1=-1;t_2=-\dfrac{1}{2}\)
Với t= -1 ta có \(x^2-2x=-1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Với t= -1/2 ta có \(x^2-2x=-\dfrac{1}{2}\)
\(\Leftrightarrow2x^2-4x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{2}}{2}\\x=\dfrac{2-\sqrt{2}}{2}\end{matrix}\right.\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{1;\dfrac{2+\sqrt{2}}{2};\dfrac{2-\sqrt{2}}{2}\right\}\)
b, ĐK: x khác 0
Đặt \(x+\dfrac{1}{x}=t\)
Phương trình đã cho trở thành: \(t^2-4t+3=0\)
Có a+b+c=1-4+3=0
=> Phương trình có 2 nghiệm \(t_1=1;t_2=3\)
• Với t=1 ta có \(x+\dfrac{1}{x}=1\)
\(\Leftrightarrow x^2-x+1=0\)
Vì \(\Delta=1^2-4.1=-3< 0\) nên pt vô nghiệm
• Với t=3 ta có \(x+\dfrac{1}{x}=3\)
\(\Leftrightarrow x^2-3x+1=0\)
\(\Leftrightarrow x=\dfrac{3\pm\sqrt{5}}{2}\) (TMĐK)
Vậy tập nghiệm của pt đã cho là \(S=\left\{\dfrac{3+\sqrt{5}}{2};\dfrac{3-\sqrt{5}}{2}\right\}\)
Lời giải:
ĐKXĐ: \(x\neq \pm 1\)
Ta có: \(\left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2=\frac{10}{9}\)
\(\Leftrightarrow \left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2+2.\frac{x}{x-1}.\frac{x}{x+1}=\frac{10}{9}+\frac{2x^2}{(x-1)(x+1)}\)
\(\Leftrightarrow \left(\frac{x}{x-1}+\frac{x}{x+1}\right)^2=\frac{10}{9}+\frac{2x^2}{x^2-1}\)
\(\Leftrightarrow \left(\frac{x(x+1)+x(x-1)}{x^2-1}\right)^2=\frac{10}{9}+\frac{2x^2}{x^2-1}\)
\(\Leftrightarrow \left(\frac{2x^2}{x^2-1}\right)^2=\frac{10}{9}+\frac{2x^2}{x^2-1}\)
Đặt \(\frac{2x^2}{x^2-1}=t\Rightarrow t^2=\frac{10}{9}+t\)
\(\Leftrightarrow 9t^2-9t-10=0\)
\(\Leftrightarrow (3t-5)(3t+2)=0\) \(\Leftrightarrow \left[\begin{matrix} t=\frac{5}{3}\\ t=\frac{-2}{3}\end{matrix}\right.\)
Nếu \(t=\frac{5}{3}\Rightarrow \frac{2x^2}{x^2-1}=\frac{5}{3}\Leftrightarrow 6x^2=5x^2-5\)
\(\Leftrightarrow x^2=-5\) (VL)
Nếu \(t=\frac{-2}{3}\Rightarrow \frac{2x^2}{x^2-1}=\frac{-2}{3}\)
\(\Leftrightarrow 6x^2=2-2x^2\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\pm\frac{1}{2}\)(t/m)
Vậy..........
a) \(\frac{1}{x-1+\sqrt{x^2-2x+3}}+\frac{1}{x-1-\sqrt{x^2-2x+3}}=1\)
ĐKXĐ : \(x\inℝ\)
\(\Leftrightarrow\frac{x-1-\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}+\frac{x-1+\sqrt{x^2-2x+3}}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}=\frac{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}{\left(x-1+\sqrt{x^2-2x+3}\right)\left(x-1-\sqrt{x^2-2x+3}\right)}\)
\(\Rightarrow2x-2=\left[\left(x-1\right)+\left(\sqrt{x^2-2x+3}\right)\right]\left[\left(x-1\right)-\left(\sqrt{x^2-2x+3}\right)\right]\)
\(\Leftrightarrow2x-2=\left(x-1\right)^2-\left(\sqrt{x^2-2x+3}\right)^2\)
\(\Leftrightarrow2x-2=x^2-2x+1-\left(x^2-2x+3\right)\)
\(\Leftrightarrow2x-2=x^2-2x+1-x^2+2x-3\)
\(\Leftrightarrow2x-2=-2\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy phương trình có nghiệm duy nhất x = 0
\(x^2-x-\dfrac{1}{x}+\dfrac{1}{x^2}-10=0\)
\(\Rightarrow\left(x^2+\dfrac{1}{x^2}\right)-\left(x+\dfrac{1}{x}\right)-10=0\)
Đặt: \(x+\dfrac{1}{x}=t\) ta có: \(\left(x+\dfrac{1}{x}\right)^2=t^2\Leftrightarrow x^2+2+\dfrac{1}{x^2}=t^2\Leftrightarrow x^2+\dfrac{1}{x^2}=t^2-2\)
\(\Rightarrow t^2-2-t-10=0\)
\(\Rightarrow t^2-t-12=0\)
\(\Rightarrow t^2-4t+3t-12=0\)
\(\Rightarrow t\left(t-4\right)+3\left(t-4\right)=0\)
\(\Rightarrow\left(t+3\right)\left(t-4\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-3\\t=4\end{matrix}\right.\)
Thay vào rồi giải tiếp nha bạn