Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x+1\right)^3-1=\left(x-1\right)^3+1\)
\(\Leftrightarrow x^3-3x^2+3x-1+1=x^3+3x^2+3x+1-1\)
\(\Leftrightarrow-6x^2=0\)
hay x=0
ĐK: \(x^2-1\ge0\)
pt <=> \(\left(x^2+2x+1\right)-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)-4x^2+4x-1=0\)
<=> \(\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)\right]-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}-2x+1\right)\left(x+1-\sqrt{x^2-1}+2x-1\right)=0\)
Phương trình tích. Dễ rồi đúng ko? Tự làm tiếp nhé!
\(x^2-x-\dfrac{1}{x}+\dfrac{1}{x^2}-10=0\)
\(\Rightarrow\left(x^2+\dfrac{1}{x^2}\right)-\left(x+\dfrac{1}{x}\right)-10=0\)
Đặt: \(x+\dfrac{1}{x}=t\) ta có: \(\left(x+\dfrac{1}{x}\right)^2=t^2\Leftrightarrow x^2+2+\dfrac{1}{x^2}=t^2\Leftrightarrow x^2+\dfrac{1}{x^2}=t^2-2\)
\(\Rightarrow t^2-2-t-10=0\)
\(\Rightarrow t^2-t-12=0\)
\(\Rightarrow t^2-4t+3t-12=0\)
\(\Rightarrow t\left(t-4\right)+3\left(t-4\right)=0\)
\(\Rightarrow\left(t+3\right)\left(t-4\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-3\\t=4\end{matrix}\right.\)
Thay vào rồi giải tiếp nha bạn
xét x=0 thấy không là nghiệm
xét x khác 0; đặt x=a; \(\frac{x}{x-1}=b;=>\frac{1}{a}+\frac{1}{b}=1< =>a+b=ab.\)
a3+b3+3ab-2=0<=> (a+ b)[(a+b)2- 3ab] + 3ab - 2=0 <=> ab(a2b2- 3ab)+ 3ab- 2=0
<=> (ab)3- 3(ab)2 + 3ab - 2=0 <=> (ab- 1)3 -1 =0 <=> ab- 1 = 1 <=> ab= 2 <=> \(x.\frac{x}{x-1}=2< =>x^2=2x-2< =>x^2-2x+2=0\)(vô nghiệm)
vậy pt vô nghiệm
\(x^2-x-\dfrac{1}{x}+\dfrac{1}{x^2}-10=0\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}-\left(x+\dfrac{1}{x}\right)-10=0\)
Đặt \(t=x+\dfrac{1}{x}\)
\(\Leftrightarrow t^2-2=x^2+\dfrac{1}{x^2}\)
Thế vào ta dược : \(t^2-t-12=0\)
Tới đây dễ r .
\(t^2-t-12=0\)
\(\Rightarrow t^2-t-\dfrac{1}{4}-\dfrac{47}{4}=0\)
\(\Rightarrow\left(t-\dfrac{1}{2}\right)^2=\dfrac{47}{4}\)
\(\Rightarrow\left(t-\dfrac{1}{2}-\sqrt{\dfrac{47}{4}}\right)\left(t-\dfrac{1}{2}+\sqrt{\dfrac{47}{4}}\right)=0\)