\(^{x^2-x-2017\cdot2018=0}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

28 tháng 2 2020

a) \(\frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}\)

\(\Leftrightarrow\frac{2-x}{2016}+1=\frac{1-2}{2017}+1-\frac{x}{2018}+1\)

\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)

\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)

\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

\(\Leftrightarrow2018-x=0\) ( vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\))

\(\Leftrightarrow x=2018\)

Vậy nghiệm của pt x=2018

b)\(\frac{x-19}{1999}+\frac{x-23}{1995}+\frac{x+82}{700}=5\)

\(\Leftrightarrow\left(\frac{x-19}{1999}-1\right)+\left(\frac{x-23}{1995}+-1\right)+\left(\frac{x+82}{700}-3\right)=0\)

\(\Leftrightarrow\frac{x-2018}{1999}+\frac{x-2018}{1995}+\frac{x-2018}{700}=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\right)=0\)

\(\Leftrightarrow x-2018=0\)( vì \(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\ne0\))

\(\Leftrightarrow x=2018\)

Vậy nghiệm của pt x=2018

c) \(x^3-3x^2+4=0\)

\(\Leftrightarrow x^3+x^2-4x^2+4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)

Vậy tập hợp nghiệm \(S=\left\{-1;2\right\}\)

21 tháng 3 2020

Cộng 2 vế của phương trình với 2 ta có: \(\frac{2-x}{2016}+1=\left(\frac{1-x}{2017}+1\right)-\left(\frac{x}{2018}-1\right)\)

\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}-\frac{x-2018}{2018}\)\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)

\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

Vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)\(\Rightarrow2018-x=0\)\(\Leftrightarrow x=2018\)

Vậy tập nghiệm của phương trình là \(S=\left\{2018\right\}\)

9 tháng 3 2019

mk ko chép lại đề nha:

\(\Rightarrow\)\(\frac{x-2}{2017}\)\(-1+\frac{x-3}{2016}\)\(-1=\frac{x-4}{2015}\)\(-1+\frac{x-5}{2014}\)\(-1\)

\(\Rightarrow\)\(\frac{x-2-2017}{2017}\)\(+\frac{x-3-2016}{2016}\)\(=\frac{x-4-2015}{2015}\)\(+\frac{x-5-2014}{2014}\)

\(\Rightarrow\)\(\frac{x-2019}{2017}\)\(+\frac{x-2019}{2016}\)\(-\frac{x-2019}{2015}\)\(-\frac{x-2019}{2014}\)\(=0\)

\(\Rightarrow\)\(\left(x-2019\right)\)\(\left(\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)\)\(=0\)

\(\Rightarrow\)\(\orbr{\begin{cases}x-2019=0\\\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}=0\left(voli\right)\end{cases}}\)

\(\Rightarrow\)\(x-2019=0\)

\(\Rightarrow\)\(x=-2019\)

Chỗ mình nghi voli là vô lí nha

chúc bạn học tốt

10 tháng 3 2019

x = 2019 chứ ko phải -2019 

23 tháng 6 2020

\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)

\(\Leftrightarrow\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-3}{2018}-1\)

\(\Leftrightarrow\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)

\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

\(\Leftrightarrow x-2020=0\)

\(\Leftrightarrow x=2020\)

23 tháng 6 2020

\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)

\(< =>\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-2}{2018}-1\)

\(< =>\frac{x-5-2015}{2015}+\frac{x-4-2016}{2016}=\frac{x-3-2017}{2017}+\frac{x-2-2018}{2018}\)

\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)

\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)

\(< =>\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

Do \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)

\(< =>x-2020=0< =>x=2020\)

5 tháng 11 2018

Đặt \(2x^2+x-2018=a;x^2-5x-2017=b\) ta có : 

\(a^2+4b^2=4ab\)

\(\Leftrightarrow\)\(a^2-4ab+4b^2=0\)

\(\Leftrightarrow\)\(\left(a-2b\right)^2=0\)

\(\Leftrightarrow\)\(a-2b=0\)

\(\Leftrightarrow\)\(2x^2+x-2018-2\left(x^2-5x-2017\right)=0\)

\(\Leftrightarrow\)\(2x^2+x-2018-2x^2+10x+4034=0\)

\(\Leftrightarrow\)\(11x+2016=0\)

\(\Leftrightarrow\)\(x=\frac{-2016}{11}\)

Vậy \(x=\frac{-2016}{11}\)

Chúc bạn học tốt ~