Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần
a) ĐK: \(0\le x\le\frac{\sqrt{5}+1}{2}\)
\(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x}-1\)
\(\Leftrightarrow1-\sqrt{x^2-x}=\left(\sqrt{x}-1\right)^2\left(x\ge1\right)\)
\(\Leftrightarrow1-\sqrt{x^2-x}=x-2\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x\left(x-1\right)}=2\sqrt{x}-x\)
\(\Leftrightarrow\sqrt{x\left(x-1\right)}=\sqrt{x}\left(2-\sqrt{x}\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x-1}+\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x-1}+\sqrt{x}-2=0\end{cases}}\)
TH1: x = 0 (Loại)
TH2: \(\sqrt{x-1}+\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x-1}=2-\sqrt{x}\)
\(\Leftrightarrow x-1=4-4\sqrt{x}+x\left(x\le4\right)\)
\(\Leftrightarrow4\sqrt{x}=5\Leftrightarrow\sqrt{x}=\frac{5}{4}\Leftrightarrow x=\frac{25}{16}\left(tm\right)\)
b) \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK: \(x\ge1\)
\(pt\Leftrightarrow\sqrt{\left(x+1\right)\left(2x+6\right)}+\sqrt{\left(x+1\right)\left(x-1\right)}=2\left(x+1\right)\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2x+6}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{2x+6}+\sqrt{x-1}-2\sqrt{x+1}=0\end{cases}}\)
TH1: \(\sqrt{x+1}=0\Leftrightarrow x=-1\left(l\right)\)
TH2: \(\sqrt{2x+6}=2\sqrt{x+1}-\sqrt{x-1}\)
\(\Leftrightarrow2x+6=4\left(x+1\right)+\left(x-1\right)-4\sqrt{x^2-1}\)
\(\Leftrightarrow2x+6=5x+3-4\sqrt{x^2-1}\)
\(\Leftrightarrow4\sqrt{x^2-1}=3x-3\Leftrightarrow16\left(x^2-1\right)=9x^2-18x+9\left(x\ge1\right)\)
\(\Leftrightarrow7x^2+18x-25=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-\frac{25}{7}\left(l\right)\end{cases}}\)
dk tu xd \(\sqrt{2x^2+8x+6}\) \(+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}-\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(2\sqrt{x+3}-\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
đến đây bn tự giải nhé
a đề sai hay sao mà vô nghiệm ?
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VP^2=\left(\sqrt{2x+1}+\sqrt{17-2x}\right)^2\)
\(\le\left(1+1\right)\left(2x+1+17-2x\right)=36\)
\(\Rightarrow VP^2\le36\Rightarrow VP\le6\)
Lại có: \(VT=x^4-8x^3+17x^2-8x+22\)
\(=\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6\ge6\)
Thấy: \(VT\le VP=6\)\(\Rightarrow VT=VP=6\)
\(\Rightarrow\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6=6\)
Suy ra x=4
ko hiểu chỗ nào ib nhé
lời giải của bạn trên có 1 xíu sai nhé
Là BĐT Bu-nhi-a Cốp-xki chứ ạ ?
đặt \(\sqrt{7-x}=a\) , \(\sqrt{x-1}=b\)
rồi thay vào và ptđttnt
ĐK: \(1\le x\le7\)
\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
\(x-1+2\sqrt{7-x}-2\sqrt{x-1}-\sqrt{-x^2+8x-7}=0\)
Đặt \(\sqrt{x-1}=a;\sqrt{7-x}=b\left(a,b\ge0\right)\)
\(pt\Rightarrow a^2+2b-2a-ab=0\Leftrightarrow\left(a^2-ab\right)-\left(2a-2b\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a-2=0\\a=b\end{cases}}\)
TH1: \(a-2=0\Rightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(tm\right)\)
TH2: \(a=b\Rightarrow\sqrt{x-1}=\sqrt{7-x}\Rightarrow x=4\left(tm\right)\)
Vậy pt có 2 nghiệm x = 4 hoặc x = 5.
a) ĐK: \(x\ge-15\)
\(8x^2+16x-20-\sqrt{x+15}=0\)
<=> \(8x^2+16x-20=\sqrt{x+15}\)
=> \(64x^4+256x^2+400+256x^3-640x-320x^2=x+15\)
<=> \(64x^4+256x^3-64x^2-641x+385=0\)
<=> \(4x^2\left(16x^2+36x-35\right)+7x\left(16x^2+36x-35\right)-11\left(16x^2-36x-35\right)=0\)
<=> \(\left(16x^2+36x-35\right)\left(4x^2+7x-11\right)=0\)
<=> \(\orbr{\begin{cases}16x^2+36x-35=0\\4x^2+7x-11=0\end{cases}}\)
+) TH1: \(16x^2+36x-35=0\Leftrightarrow x=\frac{-9\pm\sqrt{221}}{8}\)( tmđk)
+) TH2: \(4x^2+7x-11=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)(tmđk)
THử từng nghiệm vào bài toán ban đầu ta chỉ 2 nghiệm x = 1 và \(x=\frac{-9-\sqrt{221}}{8}\)là đúng
Vậy phương trình có hai nghiệm:....
bình phương 2 vế ?
a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)
\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)
\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)
\(< =>x^2-5x+6=x^2-30x+225\)
\(< =>25x-219=0\)
\(< =>x=\frac{219}{25}\)
\(DK:x\notin\left(\frac{1-\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}\right)\)
PT
\(\Leftrightarrow\left(\sqrt{8x+1}-5\right)-\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\frac{8\left(x-3\right)}{\sqrt{8x+1}+5}-\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{8}{\sqrt{8x+1}}-x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(1\right)\\\frac{8}{\sqrt{8x+1}+5}-x-2=0\left(2\right)\end{cases}}\)
\(\Leftrightarrow\left(x+2\right)\left(\sqrt{8x+1}+5\right)=8\left(DK:x>-2\right)\)
\(\Leftrightarrow\left(x+2\right)\sqrt{8x+1}+x+2=0\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{8x+1}+\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\sqrt{8x+1}+\sqrt{x+2}=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{8}\\x=-2\end{cases}}\left(KTM\right)\)
Vay nghiem cua PT la \(x=3\)
ĐK: \(x\ge-\frac{1}{8}\)
pt => \(\left(x^2-x-1\right)^2=8x+1\)
<=> \(x^4+x^2+1-2x^3+2x-2x^2=8x+1\)
<=> \(x^4-2x^3-x^2-6x=0\)
<=> \(x\left(x-3\right)\left(x^2+x+2\right)=0\)
<=> x = 0 hoặc x =3 (tm đk)
Thay x =0 vào ta có: -1 =1 loại
Thay x =3 vào pt thỏa mãn
Vậy x =3 là nghiệm phương trình.
@ Mai Link@ Em kiểm tra lại dòng thứ 4 từ dưới lên và đk.