Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
\(b,\left(x^2+x+4\right)+8x\left(x^2+x+4\right)+15x^2=0\)
\(< =>x^2+x+4+8x^3+8x^2+32x+15x^2=0\)
\(< =>8x^3+\left(8x^2+15x^2+x^2\right)+\left(x+32x\right)+4=0\)
\(< =>8x^3+24x^2+33x^2+4=0\)
Lớp 8 mới học nghiệm nguyên mà cái cày nghiệm vô tỉ nên xét vô nghiệm nhé
a, Đề lỗi
b, \(\left(x^2+x+4\right)+8x\left(x^2+x+4\right)+15x^2=0\)
\(\Leftrightarrow x^2+x+4+8x^3+8x^2+32x+15x^2=0\)
\(\Leftrightarrow24x^2+33x+4+8x^3=0\)
Bấm mấy đi : Mode + Set up + 5 ý
\(x=-0,13...\)
a) Ta có: \(\frac{3x-2}{6}-\frac{4-3x}{18}=\frac{4-x}{9}\)
\(\Leftrightarrow\frac{3\left(3x-2\right)}{18}-\frac{4-3x}{18}-\frac{2\left(4-x\right)}{18}=0\)
\(\Leftrightarrow9x-6-4+3x-\left(8-2x\right)=0\)
\(\Leftrightarrow12x-10-8+2x=0\)
\(\Leftrightarrow10x-18=0\)
\(\Leftrightarrow10x=18\)
hay \(x=\frac{9}{5}\)
Vậy: \(x=\frac{9}{5}\)
b) Ta có: \(\frac{2+3x}{6}-x+2=\frac{x-7}{9}\)
\(\Leftrightarrow\frac{3\left(2+3x\right)}{18}-\frac{18x}{18}+\frac{36}{18}-\frac{2\left(x-7\right)}{18}=0\)
\(\Leftrightarrow6+9x-18x+36-\left(2x-14\right)=0\)
\(\Leftrightarrow42-9x-2x+14=0\)
\(\Leftrightarrow56-11x=0\)
\(\Leftrightarrow11x=56\)
hay \(x=\frac{56}{11}\)
Vậy: \(x=\frac{56}{11}\)
c) ĐKXĐ: x∉{3;-3}
Ta có: \(\frac{6-x}{x^2-9}+\frac{2}{x+3}=\frac{-5}{x-3}\)
\(\Leftrightarrow\frac{6-x}{\left(x-3\right)\left(x+3\right)}+\frac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow6-x+2x-6=-5x-15\)
\(\Leftrightarrow x+5x+15=0\)
\(\Leftrightarrow6x=-15\)
hay \(x=\frac{-5}{2}\)(tm)
Vậy: \(x=\frac{-5}{2}\)
d) Ta có: \(\left(5x+2\right)\left(x^2-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=0\\x^2-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-2\\x^2=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{5}\\x=\pm\sqrt{7}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-2}{5};\sqrt{7};-\sqrt{7}\right\}\)
e) ĐKXĐ: x∉{4;-4}
Ta có: \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)
\(\Leftrightarrow\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{5x-2}{\left(x-4\right)\left(x+4\right)}-\frac{4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=0\)
\(\Leftrightarrow3x+12+5x-2-\left(4x-16\right)=0\)
\(\Leftrightarrow8x+10-4x+16=0\)
\(\Leftrightarrow4x+26=0\)
\(\Leftrightarrow4x=-26\)
hay \(x=\frac{-13}{2}\)(tm)
Vậy: \(x=\frac{-13}{2}\)
1/ Ta có
\(x^2+9x+20=x^2+4x+5x+20=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)
Tương tự
\(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
Đk: x khác 4, 5, 6, 7
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\frac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}+\frac{\left(x+7\right)-\left(x+6\right)}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\) EM tự làm tiếp nhé
\(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}\right)=\left(x-23\right)\left(\frac{1}{26}+\frac{1}{27}\right)\text{ nhận thấy:}\frac{1}{24}+\frac{1}{25}>\frac{1}{26}+\frac{1}{27}\)
\(\Rightarrow x-23=0\Leftrightarrow x=23\)
\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\Rightarrow\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)=\left(\frac{x+3}{2002}+1\right)+\left(\frac{x+4}{2001}+1\right)\)
\(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\text{dạng giống câu a rồi nha}\)
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\Leftrightarrow300-x=0\)
Vậy: x=300
a) \(\frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}\)
\(\Leftrightarrow\frac{2-x}{2016}+1=\frac{1-2}{2017}+1-\frac{x}{2018}+1\)
\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)
\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow2018-x=0\) ( vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\))
\(\Leftrightarrow x=2018\)
Vậy nghiệm của pt x=2018
b)\(\frac{x-19}{1999}+\frac{x-23}{1995}+\frac{x+82}{700}=5\)
\(\Leftrightarrow\left(\frac{x-19}{1999}-1\right)+\left(\frac{x-23}{1995}+-1\right)+\left(\frac{x+82}{700}-3\right)=0\)
\(\Leftrightarrow\frac{x-2018}{1999}+\frac{x-2018}{1995}+\frac{x-2018}{700}=0\)
\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\right)=0\)
\(\Leftrightarrow x-2018=0\)( vì \(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\ne0\))
\(\Leftrightarrow x=2018\)
Vậy nghiệm của pt x=2018
c) \(x^3-3x^2+4=0\)
\(\Leftrightarrow x^3+x^2-4x^2+4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
Vậy tập hợp nghiệm \(S=\left\{-1;2\right\}\)
\(x^2-x=x\left(x-1\right)\)
ĐKXĐ: \(x\ne0;x\ne1\)
\(x^2-x-18+\frac{72}{x^2-x}=0\)
\(\Leftrightarrow\left(x^2-x-18\right)\left(x^2-x\right)+72=0\Leftrightarrow\left(x^2-x\right)^2-18\left(x^2-x\right)+72=0\)
\(\Leftrightarrow\left(x^2-x-9\right)^2-3^2=0\)
\(\Leftrightarrow\left(x^2-x-6\right)\left(x^2-x-12\right)=0\)
\(\Leftrightarrow x=\left\{3;-2;-3;4\right\}\)