Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3.\left(3x\right)^2.1+3.3x.1^2+1^3\)
\(=\left(3x+1\right)^3\)
\(b,x^3+3\sqrt{2}x^2y+6xy^2+2\sqrt{2}y^3\)
\(=x^3+3.x^2.\sqrt{2}y+3.x.\left(\sqrt{2}y\right)^2+\left(\sqrt{2}y\right)^3\)
\(=\left(x+\sqrt{2}y\right)^3\)
Bài 2:
\(a,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(b,\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3-4x^2+4x+x-1=0\)
\(\Leftrightarrow-x^2+8x=0\)
\(\Leftrightarrow-x\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
1)
a) = (3x+1)3
b) (x+\(\sqrt{2}\) )3
2)
a)\(x^3+9x^2+27x+27=0\\ \left(x+3\right)^3=0\\ =>x=-3\)
b) Bài cuối bạn tự làm nhé! Mình mắc học bài
# Chúc bạn học tốt !
1.
$27x^2-1=(\sqrt{27}x)^2-1^2=(\sqrt{27}x-1)(\sqrt{27}x+1)$
2.
a)
$x^3-9x^2+27x-27=-8$
$\Leftrightarrow x^3-3.3x^2+3.3^2.x-3^3=-8$
$\Leftrightarrow (x-3)^3=-8=(-2)^3$
$\Rightarrow x-3=-2$
$\Leftrightarrow x=1$
b)
$64x^3+48x^2+12x+1=27$
$\Leftrightarrow (4x)^3+3.(4x)^2.1+3.4x.1^2+1^3=27$
$\Leftrightarrow (4x+1)^3=3^3$
$\Rightarrow 4x+1=3$
$\Leftrightarrow x=\frac{1}{2}$
\(3.\)
Ta có:
\(x^2-9x-6\sqrt{x}+34=0\)
\(\Leftrightarrow\) \(x^2-2.5.x+25+x-2.3.\sqrt{x}+9=0\)
\(\Leftrightarrow\) \(\left(x-5\right)^2+\left(\sqrt{x}-3\right)^2=0\) \(\left(3\right)\)
Mà \(\left(x-5\right)^2\ge0;\) \(\left(\sqrt{x}-3\right)^2\ge0\) với \(x\in R\)
nên \(\left(3\right)\) \(\Leftrightarrow\) \(\left(x-5\right)^2=0;\) và \(\left(\sqrt{x}-3\right)^2=0\)
\(\Leftrightarrow\) \(x-5=0;\) và \(\sqrt{x}-3=0\)
\(\Leftrightarrow\) \(x=5;\) và \(x=9\)
Thay \(x=5\) vào vế trái của phương trình \(\left(3\right)\), ta được:
\(VT=\left(5-5\right)^2+\left(\sqrt{5}-3\right)^2\ne0=VP\) (vô lý!)
Tương tự với \(x=9\), ta cũng có điều vô lý như ở trên.
Vậy, phương trình vô nghiệm, tức tập nghiệm của phương trình \(S=\phi\)
\(1.\) Đặt biến phụ.
\(2.\) Biến đổi phương trình tương đương:
\(\left(2\right)\) \(\Leftrightarrow\) \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)=2.2016z-2016^2\)
\(\Leftrightarrow\) \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)-2.2016z+2016^2=0\)
\(\Leftrightarrow\) \(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(y^2+2yz+z^2\right)+\left(z^2-2.2016z+2016^2\right)=0\)
\(\Leftrightarrow\) \(\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y+z\right)^2+\left(z-2016\right)^2=0\)
\(\Leftrightarrow\) \(\left(x+y+1\right)^2+\left(y+z\right)^2+\left(z-2016\right)^2=0\)
Vì \(\left(x+y+1\right)^2\ge0;\) \(\left(y+z\right)^2\ge0;\) \(\left(z-2016\right)^2\ge0\) với mọi \(x,y,z\in R\)
Do đó, \(\left(x+y+1\right)^2=0;\) \(\left(y+z\right)^2=0;\) và \(\left(z-2016\right)^2=0\)
\(\Leftrightarrow\) \(x+y+1=0;\) \(y+z=0;\) và \(z-2016=0\)
\(\Leftrightarrow\) \(x=-y-1;\) \(y=-z;\) và \(z=2016\)
\(\Leftrightarrow\) \(x=2015;\) \(y=-2016;\) và \(z=2016\)
mình chỉ viết đáp án thôi nhé! còn nếu ý nào bạn cần lời giải chi tiết mình sẽ giải cho!
a) S= { -2/3;-3/2}
b) S= {-5;1}
c) S= {-1/2;1}
d) S= {3/7;4}
e) S= {3;5}
NHỚ BẤM ĐÚNG CHO MÌNH NHÉ!
\(a,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)
Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)
Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)
Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)
Và \(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:
\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt
Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)
\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)
\(c,x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(d,x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(e,8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)
\(f,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)
a/ Tách 300 thành 100 chữ số 3 rồi chuyển vế dồn từng số 3 vào ( ) có \(\left(x^2-x-2\right)+\left(x^2-2x\right)+\left(x^2-3x+2\right)+...+\left(x^2-100x+196\right)\)
=0 \(\Leftrightarrow\left(x-2\right)\left(x+1\right)+x\left(x-3\right)+\left(x-1\right)\left(x-2\right)+...+\left(x-96\right)\left(x-4\right)+\left(x-97\right)\left(x-3\right)+\left(x-98\right)\left(x-2\right)\)=0\(\Leftrightarrow\left(x-2\right)\left(2x-97\right)+\left(x-3\right)\left(2x-97\right)+...=0\Rightarrow x=2\)
b tường đương \(x^2-4+\frac{4x^2}{x^2-4x+4}-1=0\Leftrightarrow\left(x-2\right)\left(x+2\right)+\frac{3x^2+4x-4}{\left(x-2\right)^2}=0\Leftrightarrow\left(x-2\right)\left(x+2\right)+\frac{\left(x+2\right)\left(3x-2\right)}{\left(x-2\right)^2}=0\Leftrightarrow\left(x-2\right)\left(x+2+\frac{3x-2}{\left(x-2\right)^2}\right)=0\Leftrightarrow x=2\)
\(a,9x-x^3=x\left(9-x^2\right)=x\left(3-x\right)\left(3+x\right)\)
\(b,\left(2xy+1\right)^2-\left(2x+y\right)^2\)
\(=\left(2xy+1-2x-y\right)\left(2xy+1+2x+y\right)\)
\(c,x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=\left(x^3-3x^2\right)+\left(5x^2-15x\right)+\left(9x-27\right)\)
\(=x^2\left(x-3\right)+5x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
\(d,\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)\)
\(=\left(x+y\right)\left(x+y-x+y\right)\)
\(=2y\left(x+y\right)\)
\(e,x-2x^2-4y^2-4y\)
Câu này ko phân tích đc nhé bn
Bn kiểm tra lại đề bài
\(g,x^3-x^2-5x+125\)
\(=x^3-6x^2+25x+5x^2-30x+125\)
\(=\left(x^3+5x^2\right)-\left(6x^2+30x\right)+\left(25x+125\right)\)
\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
mình sẽ giải câu 3 cho bạn nhé
đề bài=> \(\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-...-\frac{1}{x+7}=\frac{1}{18}\)
\(\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)
\(\left(x+13\right)\left(x-2\right)=0\)
\(\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)
nhớ thank mk nhé
câu 5 nà
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
<=>\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)
<=>\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge9\)
<=>\(3+2+2+2\ge9\)(bất đẳng thức luôn đúng)
=> điều phải chứng minh
Lời giải:
ĐKXĐ: $x\neq -3$
PT $\Leftrightarrow (x+3)^2+\frac{9x^2}{(x+3)^2}=27+6x+9$
$\Leftrightarrow [(x+3)-\frac{3x}{x+3}]^2+6x=27+6x+9$
$\Leftrightarrow [(x+3)-\frac{3x}{x+3}]^2=36$
$\Rightarrow x+3-\frac{3x}{x+3}=6$ hoặc $x+3-\frac{3x}{x+3}=-6$
Nếu $x+3-\frac{3x}{x+3}=6$
$\Leftrightarrow x-\frac{3x}{x+3}=3$
$\Leftrightarrow \frac{x^2}{x+3}=3$
$\Rightarrow x^2=3x+9$
$\Leftrightarrow x^2-3x-9=0$
$\Leftrightarrow x=\frac{3}{2}(1\pm \sqrt{5})$
Nếu $x+3-\frac{3x}{x+3}=-6$
$\Leftrightarrow x-\frac{3x}{x+3}=-9$
$\Leftrightarrow \frac{x^2}{x+3}=-9$
$\Rightarrow x^2+9x+27=0$
$\Leftrightarrow (x+4,5)^2=-6,75<0$ (vô lý - loại)
Vậy..........