\(\sqrt{3x+7}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

ĐKXĐ : \(x\ge-\dfrac{7}{3}\)

\(x^2+7x+12=2\sqrt{3x+7}\)

\(\Leftrightarrow x^2+7x+12-2\sqrt{3x+7}=0\)

\(\Leftrightarrow\left(x^2+4x+4\right)+\left(3x+7-2\sqrt{3x+7}+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(\sqrt{3x+7}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)^2=0\\\left(\sqrt{3x+7}-1\right)^2=0\end{matrix}\right.\Leftrightarrow x=-2\left(TMĐK\right)\)

Vậy \(S=\left\{-2\right\}\)

Chúc bạn học tốt

25 tháng 7 2018

Cảm ơn nhiều ạ , mà sao không đặt ẩn phụ vậy ?

22 tháng 8 2017

Đặt \(\sqrt{x^2+7x+8}=a\) thì ta có

\(a^2+a-20=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-5\left(l\right)\\a=4\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2+7x+8}=4\)

\(\Leftrightarrow x^2+7x-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=1\end{cases}}\)

19 tháng 10 2020

\(x^2+7x+\sqrt{x^2+7x+8}=12\)

ĐK : \(x^2+7x+8\ge0\Leftrightarrow\orbr{\begin{cases}x\le\frac{-7-\sqrt{17}}{2}\\x\ge\frac{-7+\sqrt{17}}{2}\end{cases}}\)

Đặt \(t=x^2+7x\)

pt \(\Leftrightarrow t+\sqrt{t+8}=12\)

\(\Leftrightarrow\sqrt{t+8}=12-t\)\(-8\le t\le12\))

Bình phương hai vế

\(\Leftrightarrow t+8=144-24t+t^2\)

\(\Leftrightarrow t^2-24t+144-t-8=0\)

\(\Leftrightarrow t^2-25t+136=0\)(*)

\(\Delta=b^2-4ac=\left(-25\right)^2-4\cdot136=625-544=81\)

\(\Delta>0\)nên (*) có hai nghiệm phân biệt

\(\hept{\begin{cases}t_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{25+\sqrt{81}}{2}=\frac{34}{2}=17\left(loai\right)\\t_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{25-\sqrt{81}}{2}=\frac{16}{2}=8\left(nhan\right)\end{cases}}\)

\(\Rightarrow x^2+7x=8\)

\(\Rightarrow x^2+7x-8=0\)

\(\Rightarrow x^2-x+8x-8=0\)

\(\Rightarrow x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+8\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}\left(tm\right)}\)

Vậy phương trình có hai nghiệm \(\hept{\begin{cases}x_1=1\\x_2=-8\end{cases}}\)

12 tháng 10 2017

a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)

Phương trình đã cho tương đương với hệ

\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)

\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)

Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm

12 tháng 10 2017

c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)

\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)

Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)

Tiếp tục giải ;v

30 tháng 9 2018

a) Đặt: \(\sqrt{x^2+1}=t\left(t\ge0\right)\), \(t^2=x^2+1\Rightarrow x^2-1=t^2-2\)

pt tương đương với \(\left(x^2-1\right)^2-12\sqrt{x^2+1}-13=0\)

=> \(\left(t^2-2\right)^2-12t-13=0\), rút gọn và phân tích pt này ta được: \(\left(t+1\right)\left(t-3\right)\left(t^2+2t+3\right)=0\)

\(t^2+2t+3=\left(t+1\right)^2+2>0\left(\forall t\right)\) nên \(\left[{}\begin{matrix}t+1=0\\t-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

Với t = -1 thì 1 = x2 +1 <=> x=0

Với t = 3 thì 9 = x2 +1 <=> \(x=\pm2\sqrt{2}\)

Lần lượt thay các giá trị của x vừa tìm được vào pt ban đầu, nhận \(x=\pm2\sqrt{2}\) là nghiệm của pt

Vậy pt đã cho có 2 nghiêm là x =... ; x =...

b) Dùng PP chứng minh nghiệm duy nhất

x=9 là nghiệm của pt

Với x>9 thì VT > \(9+\sqrt{9-5}+\sqrt{9}+\sqrt{9^2-5.9}=20\)

Với x<9 thì VT < \(9+\sqrt{9-5}+\sqrt{9}+\sqrt{9^2-5.9}=20\)

Vậy...........

c) Vì \(\left|x-2y+1\right|\ge0\)\(\left|3x+y-7\right|\ge0\) nên

\(\left\{{}\begin{matrix}x-2y+1=0\\3x+y-7=0\end{matrix}\right.\),hệ này cho x = \(\dfrac{13}{7}\), y = \(\dfrac{10}{7}\)

Vậy.....

Có vài chỗ mk làm gọn, mong bạn hiểu cho

30 tháng 9 2018

Câu b) mk quên đặt ĐK(x >= 5) bạn nhé!!!hiha

5 tháng 2 2018

\(x^3+x^2+7x+7=\sqrt{\left(3-x\right)^3}\)

\(\Leftrightarrow x^2\left(x+1\right)+7\left(x+1\right)=\sqrt{\left(3-x\right)^3}\)

\(\Leftrightarrow\left(x^2+7\right)\left(x+1\right)-\sqrt{\left(3-x\right)^3}=0\)

( Em chưa học lớp 9 nên chỉ biết tới đây thôi ạ!)

19 tháng 7 2019

gợi ý nhé 

a (=)  2x.( 4x2+1) = (3x+2). căn(3x+1)          ( x>=-1/3)

 đặt 2x =a 

     căn (3x+1) = b    (b>=0)

  ta có hpt sau            a.(a2 +1)=b.(b2+1)    (1)

                                  3a-2b2= -2                (2)

   giải (1)   (=) a3 + a = b3 + b

                (=) (a-b).(a2+ab+b2+1) = 0 =) a=b  ( vì a2+ab+b2+1>0)

phần còn lại tự giải nhé

b (=)   (x+1).(x2+2x+2)=(x+2) . căn(x+1)         (x>=-1)   

(=) căn (x+1) . [căn(x+1) . (x2+2x+2) -x-2] = 0

=) x=-1

hay  căn(x+1) . (x2+2x+2) -x-2=0 

     cách 1 giải phổ thông ( chuyển vế rồi bình phương)

  cách 2 đặt ẩn phụ và lập hệ

 đặt căn(x+1)=a (a>=0) 

  =) a.[x(a2+1)+2] = a2+1   và a2 - x =1

tự giải nhé

c,tạm thời chưa nghĩ ra 

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x27x+33x25x1=x22x23x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
2x+43x27x+3+3x25x1=3x6x22+x23x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

(x2)(3x22+x23x+4+23x27x+3+3x25x1)=0⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23x723≤x≤7

Phương trình đã cho tương đương với:

3x183x2+4+x67x1+(x6)(3x2+x2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

(x6)(33x2+4+17x1+3x2+x2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

x=6⇔x=6

vì với 23x723≤x≤7

thì: (33x2+4+17x1+3x2+x2)(33x−2+4+17−x−1+3x2+x−2)>0

15 tháng 10 2016

b/ Xác định điều kiện xác định ta có

\(\hept{\begin{cases}2-x^2+2x\ge0\\-7x-8\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{3}\le x\le1+\sqrt{3}\\x\le\frac{-8}{7}\end{cases}}\)

=> Tập xác định của phương trình là tập rỗng nên phương trình vô nghiệm

15 tháng 10 2016

Cái đề đúng không thế cháu hình như bị vô nghiệm hết cả 2 bài luôn