√2x+3

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2018

ĐK : \(x\ge-\frac{3}{2}\)

\(PT\Leftrightarrow x^2-4x+21-6\sqrt{2x+3}=0\)

\(\Leftrightarrow\left(2x+3-6\sqrt{2x+3}+9\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)^2+\left(x-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2x+3}-3=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x+3=9\\x=3\end{cases}\Rightarrow}x=3\left(TM\right)}\)

Vậy nghiệm của PT là \(x=3\)

2 tháng 9 2019

\(VT=2\left(x^2-2.x.\frac{11}{4}+\frac{121}{16}\right)+\frac{47}{8}>0\)

=> \(VP>0\)=> x>1

pt <=> \(2\left(x^2-6x+9\right)=3\sqrt[3]{4x-4}-\left(x+3\right)\)

<=> \(2\left(x-3\right)^2=\frac{27\left(4x-4\right)-\left(x+3\right)^3}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\)

<=> \(2\left(x-3\right)^2=\frac{-\left(x+15\right)\left(x-3\right)^2}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\)

<=> \(\left(x-3\right)^2\left(2+\frac{x+15}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}\right)=0\)

x>1 => $\(2+\frac{x+15}{9\sqrt[3]{\left(4x-4\right)^2}+3\left(x+3\right)\sqrt[3]{4x-4}+\left(x+3\right)^2}>0\)

pT <=> \(\left(x-3\right)^2=0\)

<=> x=3

2 tháng 9 2019

E cảm ơn

31 tháng 5 2017

pt <=> x2 - 4x + 21 - 6\(\sqrt{2x+3}\) = 0

<=> (x2 - 6x + 9) + [(2x + 3) - 6\(\sqrt{2x+3}\) + 9]

<=> (x - 3)2 + (\(\sqrt{2x+3}\) - 3)2 = 0

<=> \(\left\{{}\begin{matrix}x-3=0\\\sqrt{2x+3}-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=3\\2x+3=9\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=3\\x=3\end{matrix}\right.\)

Vậy x = 3

5 tháng 5 2019

\(\Leftrightarrow x^2-4x+3=6\sqrt{2x+3}-18\)ĐK:\(x\ge\frac{-3}{2}\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)-6\left(\frac{6-2x}{3+\sqrt{2x+3}}\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[x-1+\frac{12x-36}{3+\sqrt{2x+3}}\right]=0\)

Ta thấy bthức trong ngoặc vuông lớn hơn 0 với\(x\ge\frac{-3}{2}\)

Vậy x=3.

5 tháng 5 2019

x2 - 4x + 21 = 6

<=> x2 - 4x + 21 - 6 = 0

<=> x2 - 4x + 15 = 0 (1)

\(\Delta\)' = (-2)2 - 1. 15 = -11 < 0

=> Pt (1) vô nghiệm

Vậy pt đã cho vô nghiệm

17 tháng 11 2019

\(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)

Đặt \(\sqrt{2x^2+3x+2}=a;\sqrt{4x^2+6x+21}=b\left(a,b>0\right)\)

Ta có hệ pt :\(\hept{\begin{cases}a+b=11\\b^2-2a^2=17\end{cases}}\)

Đến đây sd pp thế là được nha

24 tháng 12 2017

1117376.html

24 tháng 12 2017

Bấm vô mấy chữ số màu xanh nhé!