
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)

a: \(\Leftrightarrow x^2-3x+\dfrac{9}{4}=\dfrac{5}{4}\)
=>(x-3/2)2=5/4
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{3}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{-\sqrt{5}+3}{2}\end{matrix}\right.\)
b: \(x^2+\sqrt{2}x-1=0\)
nên \(x^2+2\cdot x\cdot\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow\left(x+\dfrac{\sqrt{2}}{2}\right)^2=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}}{2}\\x+\dfrac{\sqrt{2}}{2}=-\dfrac{\sqrt{6}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-\sqrt{2}}{2}\\x=\dfrac{-\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
c: \(5x^2-7x+1=0\)
\(\Leftrightarrow x^2-\dfrac{7}{5}x+\dfrac{1}{5}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{10}+\dfrac{49}{100}=\dfrac{29}{100}\)
\(\Leftrightarrow\left(x-\dfrac{7}{10}\right)^2=\dfrac{29}{100}\)
hay \(x\in\left\{\dfrac{\sqrt{29}+7}{10};\dfrac{-\sqrt{29}+7}{10}\right\}\)

(1)Phương trình đã cho tương đương với:
√3x2−7x+3−√3x2−5x−1=√x2−2−√x2−3x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
⇔−2x+4√3x2−7x+3+√3x2−5x−1=3x−6√x2−2+√x2−3x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23≤x≤723≤x≤7
Phương trình đã cho tương đương với:
3x−18√3x−2+4+x−6√7−x−1+(x−6)(3x2+x−2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0
⇔(x−6)(3√3x−2+4+1√7−x−1+3x2+x−2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0
⇔x=6⇔x=6
vì với 23≤x≤723≤x≤7
thì: (3√3x−2+4+1√7−x−1+3x2+x−2)(33x−2+4+17−x−1+3x2+x−2)>0

\(\left(4-x^2\right)\left(\sqrt{3x+1}-3+x\right)=0\)\(\left(đk:x\ge-\frac{1}{3}\right)\)
\(\Leftrightarrow\left(2-x\right)\left(2+x\right)\left(\sqrt{3x+1}-3+x\right)=0\)
TH1: 2 - x = 0 <=> x = 2 (t/m)
TH2: 2 + x = 0 <=> x=-2(t/m)
TH3 : \(\sqrt{3x+1}-3+x=0\)
\(\Leftrightarrow\sqrt{3x+1}=3-x\)
\(\Leftrightarrow3x+1=9-6x+x^2\)
\(\Leftrightarrow x^2-9x+8=0\)
\(\Leftrightarrow\left(x-8\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=1\end{cases}}\)(t/m)

\(\Leftrightarrow\frac{-3x\left(x+1\right)}{x+\sqrt{x^2+x+1}}+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(1-\frac{3x}{\sqrt{x^2+x+1}}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(1\right)\\1=\frac{3x}{\sqrt{x^2+x+1}}\left(2\right)\end{cases}}\)
PT(2)\(\Leftrightarrow\sqrt{x^2+x+1}=3x\)
\(\Leftrightarrow x^2+x+1=9x^2\)
\(\Leftrightarrow8x^2-x-1=0\)
Ta co
\(\Delta=\left(-1\right)^2-4.8.\left(-1\right)=33>0\)
\(\Rightarrow x_1=\frac{1+\sqrt{33}}{8};x_2=\frac{1-\sqrt{33}}{8}\)
Vay PT co nghiem la \(x=-1;x_1=\frac{1+\sqrt{33}}{8};x_2=\frac{1-\sqrt{33}}{8}\)

ĐK: \(x\ge\frac{1}{3}\)
Đặt: \(\sqrt{3x-1}=t\left(t\ge0\right)\)
Ta có pt: \(x^2-x-t^2+t=0\)
<=> \(\left(x^2-t^2\right)-\left(x-t\right)=0\)
<=> \(\left(x-t\right)\left(x+t-1\right)=0\)
<=> \(\Leftrightarrow\orbr{\begin{cases}t=x\\t=1-x\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{3x-1}=x\\\sqrt{3x-1}=1-x\end{cases}}\)
Em làm tiếp nhé!
\(ĐK:x\ge1\)
\(x^2-3x+2\sqrt{x-1}+1=0\Leftrightarrow x^2-3x+1=-2\sqrt{x-1}\)\(\Leftrightarrow x^2-2x=\left(x-1\right)-2\sqrt{x-1}\Leftrightarrow\left(x-\sqrt{x-1}\right)\left(x+\sqrt{x-1}-2\right)=0\)
Th1: \(x=\sqrt{x-1}\Leftrightarrow x^2=x-1\Leftrightarrow x^2-x+1=0\)(Vô nghiệm vì \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\inℝ\))
Th2: \(x+\sqrt{x-1}-2=0\Leftrightarrow\sqrt{x-1}=2-x\)(với \(1\le x\le2\))
\(\Leftrightarrow x-1=x^2-4x+4\Leftrightarrow x^2-5x+5=0\)(*)
Giải (*) kết hợp với điều kiện ta chỉ có 1 nghiệm \(x=\frac{5-\sqrt{5}}{2}\)
Vậy nghiệm duy nhất của phương trình là\(\frac{5-\sqrt{5}}{2}\)