K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

\(x^2-2x=2\sqrt{2x-1}\) \(\left(Đk:x\ge\dfrac{1}{2}\right)\)

\(x^2=2x+2\sqrt{2x-1}\)

\(x^2=2x-1+2\sqrt{2x-1}+1\)

\(x^2=\left(\sqrt{2x-1}+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2x-1}+1\\x=-\sqrt{2x-1}-1\end{matrix}\right.\)

+) \(x=\sqrt{2x-1}+1\)

\(x-1=\sqrt{2x-1}\left(x\ge1\right)\)

\(x^2-2x+1=2x-1\)

\(x^2-4x+2=0\)

\(\left(x-2\right)^2=2\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+2\left(TM\right)\\x=2-\sqrt{2}\left(L\right)\end{matrix}\right.\)

+) \(x=-\sqrt{2x-1}-1\)

VP\(\le-1\) mà \(VT\ge\dfrac{1}{2}\)

=> phương trình vô nghiệm

Vậy \(S=\left\{2+\sqrt{2}\right\}\)

10 tháng 2 2019

(2x + 1)\(\sqrt{x+2}\) = x2 + 2x + 2

<=> 2\(\sqrt{x+2}\) .x + \(\sqrt{x+2}\) = x2 + 2x + 2

<=> [\(\sqrt{x+2}\).(2x + 1)2] = (x2 + 2x + 2)2

<=> 4x3 +12x3 + 9x + 2 = x4 + 4x3 + 8x2 + 8x + 4

=> x = 1

ngủ đi bạn :) gần 12h rồi đấy

30 tháng 7 2016

Ta giải đơn giản thế này thôi nhé :)

Điều kiện xác định của phương trình : \(x^2-2x\ge0\Leftrightarrow x\left(x-2\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\le0\\x\ge2\end{cases}}\)

Phương trình : \(x^2-1=2x\sqrt{x^2-2x}\)

\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-2x}+\left(x^2-2x\right)\right]-\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x^2-2x}\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(1-\sqrt{x^2-2x}\right)\left(2x-\sqrt{x^2-2x}-1\right)=0\)

Đến đây xét từng trường hợp là ra :)

30 tháng 7 2016

điều kiện: \(x^2-2x\ge0\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\le0\end{cases}}\)

pt \(\Leftrightarrow\left(x^2-1\right)^2=4x^2\left(x^2-2x\right)\)

   \(\Leftrightarrow x^4-2x^2+1=4x^4-8x^3\)

   \(\Leftrightarrow4x^4-8x^3-x^4+2x^2-1=0\)

    \(\Leftrightarrow3x^4-8x^3+2x^2-1=0\)

    \(\Leftrightarrow\left(3x^2-2x+1\right)\left(x^2-2x+1\right)=0\)

     \(\Leftrightarrow\orbr{\begin{cases}3x^2-2x+1=0\\x^2-2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}VN\\x=1\left(L\right)\end{cases}}}\)

vậy phương trình vô nghiệm 

16 tháng 8 2017

Hép mi nha

16 tháng 8 2017

1)\(x^2-3x+1+\sqrt{2x-1}=0\)

ĐK:\(x\ge\frac{1}{2}\)

\(\Leftrightarrow x^2-3x+2+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\left(x-2\right)+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

Suy ra x=1 và pt trong ngoặc chuyển vế bình phương lên đưuọc \(x=-\sqrt{2}+2\)

2)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\) (bình phương luôn cũng được nhưng cơ bản là mình ko thích :| )

\(pt\Leftrightarrow\sqrt{x^2-2x+3}=\frac{x^2+1}{x+1}\)

\(\Leftrightarrow\sqrt{x^2-2x+3}-2=\frac{x^2+1}{x+1}-2\)

\(\Leftrightarrow\frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=\frac{x^2-2x-1}{x+1}\)

\(\Leftrightarrow\frac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}-\frac{x^2-2x-1}{x+1}=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(\frac{1}{\sqrt{x^2-2x+3}+2}-\frac{1}{x+1}\right)=0\)

Pt \(\frac{1}{\sqrt{x^2-2x+3}+2}=\frac{1}{x+1}\Leftrightarrow\sqrt{x^2-2x+3}=x-1\)

\(\Leftrightarrow x^2-2x+3=x^2-2x+1\Leftrightarrow3=1\) (loại)

\(\Rightarrow x^2-2x-1=0\Rightarrow x=\frac{2\pm\sqrt{8}}{2}\)

13 tháng 8 2016

1.

\(\text{ĐK: }x\ge\frac{1}{2}\)

\(pt\Leftrightarrow\left(x^2+1\right)\left(x-\sqrt{2x-1}\right)+\)\(\left(x-\sqrt[3]{2x^2-x}\right)=0\)

\(\Leftrightarrow\left(x^2+1\right).\frac{x^2-\left(2x-1\right)}{x+\sqrt{2x-1}}+\frac{x^3-\left(2x^2-x\right)}{x^2+Ax+A^2}=0\text{ }\left(A=\sqrt[3]{2x^2-x}\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{x^2+1}{x+\sqrt{2x-1}}+\frac{2x}{x^2+A^2+\left(x+A\right)^2}\right]=0\)

\(\Leftrightarrow x=1\text{ }\left(do\text{ }....................................................>0\right)\)

14 tháng 8 2016

cảm ơn nhìu nkoa b!!!

13 tháng 10 2017

mk ko bt vào học cộng đồng 24h nhé !

13 tháng 10 2017

ta có: \(2x^2+2x+1=\sqrt{4x^2+1}.\)

\(\Leftrightarrow4x^2+4x+2-2\sqrt{4x^2+1}=0\)

\(\Leftrightarrow4x^2+1-2\sqrt{4x^2+1}+1=-4x\)

\(\Leftrightarrow\left(\sqrt{4x^2+1}-1\right)^2=-4x\)

mà \(VT\ge0\) với mọi x  => VP\(\ge0\) với mọi x

=>x=0