Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^4-26x^2+25=25x^2\)
\(\Leftrightarrow x^4-51x^2+25=0\)
\(\Leftrightarrow x^2=\frac{51\pm\sqrt{2501}}{2}\Rightarrow x=\pm\sqrt{\frac{51\pm\sqrt{2501}}{2}}\)
ĐKXĐ: ...
- Với \(x=0\) không phải nghiệm
- Với \(x\ne0\)
\(\Leftrightarrow\frac{1}{x+\frac{3}{x}+24}-\frac{1}{x+\frac{3}{x}+25}=-1\)
Đặt \(x+\frac{3}{x}+24=t\)
\(\Leftrightarrow\frac{1}{t}-\frac{1}{t+1}=-1\)
\(\Leftrightarrow t+1-t=-t\left(t+1\right)\)
\(\Leftrightarrow t^2+t+1=0\Leftrightarrow\left(t+\frac{1}{2}\right)^2+\frac{3}{4}=0\)
Pt đã cho vô nghiệm
ĐK : \(\hept{\begin{cases}x^2+24x+3\ne0\\x^2+25x+3\ne0\end{cases}}\)(@@)
Với x = 0 không phải là nghiệm phương trình
Với x khác 0 ta có:
\(\frac{x}{x^2+24x+3}-\frac{x}{x^2+25x+3}=-1\)
<=> \(\frac{1}{x+24+\frac{3}{x}}-\frac{1}{x+25+\frac{3}{x}}=-1\)
Đặt: \(x+\frac{3}{x}=t\)
Ta có phương trình ẩn t: \(\frac{1}{t+24}-\frac{1}{t+25}=-1\)(1)
ĐK: \(\hept{\begin{cases}t\ne-24\\t\ne-25\end{cases}}\)
(1) <=> \(\frac{1}{\left(t+24\right)\left(t+25\right)}=-1\)
<=> \(t^2+49t+601=0\) phương trình vô nghiệm.
Vì x2 + 24x + 3 \(\approx\) x2 + 25x + 3
Nên x2 + 24x + 3 là dương thì x2 + 25x + 3 dương
x2 + 24x + 3 là âm thì x2 + 25x + 3 âm
nên pt tích này luôn dương
TH 2 pt tích = 0 là ko thể vì hai pt nằm ở mẫu
Còn thắc mắc gì thì hỏi mk :)
Để mk giúp cho
\(\frac{x}{x^2+24x+3}-\frac{x}{x^2+25x+3}=-1\) (ĐKXĐ mk ko chắc lắm, chắc x luôn khác 0)
\(\Leftrightarrow\) x(\(\frac{1}{x^2+24x+3}-\frac{1}{x^2+25x+3}\)) = -1
\(\Leftrightarrow\) x(\(\frac{x}{\left(x^2+24x+3\right)\left(x^2+25x+3\right)}\)) = -1
\(\Leftrightarrow\) \(\frac{x^2}{\left(x^2+24x+3\right)\left(x^2+25x+3\right)}\) = -1
\(\Leftrightarrow\) (x2 + 24x + 3)(x2 + 25x + 3) = -x2
Vì (x2 + 24x + 3)(x2 + 25x + 3) luôn dương với mọi x nên pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!! (ko bt giờ này gửi cho bn có kịp ko, đây là cách của mk, bn có thể tham khảo :) )
ĐKXĐ: ...
\(\Leftrightarrow\frac{49}{\left(x-7\right)^2}+1=\frac{25}{x^2}\)
\(\Leftrightarrow\frac{49x^2}{\left(x-7\right)^2}+x^2=25\)
\(\Leftrightarrow\frac{49x^2}{\left(x-7\right)^2}+2.\frac{7x}{x-7}.x+x^2-\frac{14x^2}{x-7}=25\)
\(\Leftrightarrow\left(\frac{7x}{x-7}+x\right)^2-\frac{14x^2}{x-7}=25\)
\(\Leftrightarrow\left(\frac{x^2}{x-7}\right)^2-\frac{14x^2}{x-7}-25=0\)
Đặt \(\frac{x^2}{x-7}=a\)
\(\Rightarrow a^2-14a-25=0\)
Nghiệm xấu, bạn tự giải tiếp đoạn cuối
\(\sqrt{x+5}+\sqrt{2-x}=x^2-25\)
Đề đúng ch bn, kiểm tra lại giúp mk vs
Ta xét ĐKXĐ của bài toán:
\(\left\{{}\begin{matrix}x+5\ge0\\2-x\ge0\\x^2-25\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x\le2\\\left|x\right|\ge5\end{matrix}\right.\)\(\Leftrightarrow x=-5\)
Thử lại vào phương trình thấy không thỏa mãn.
Vậy phương trình vô nghiệm.
Em thử ạ!
ĐKXĐ: \(x\ge1\)
Đặt \(\sqrt{x-1}=t\ge0\Rightarrow x=t^2+1\)
\(PT\Leftrightarrow\sqrt{t^2-2t+1}+\sqrt{t^2+2t+1}=2\)
\(\Leftrightarrow\sqrt{\left(t-1\right)^2}+\sqrt{\left(t+1\right)^2}=2\)
\(\Leftrightarrow\left|t-1\right|+\left|t+1\right|=2\)
Với t <-1 => ko thỏa mãn điều kiện nên ta không cần xét
Với \(-1\le t< 1\) thì pt trở thành 2 = 2 (đúng)
Kết hợp đk t >= 0 suy ra \(0\le t< 1\Leftrightarrow0\le\sqrt{x-1}< 1\Leftrightarrow1\le x< 2\) (1)
Với \(t\ge1\). Phương trình trở thành \(2t=2\Leftrightarrow t=1\)
Suy ra x = 2 (2)
Kết hợp (1) và (2) suy ra \(1\le x\le2\)
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}=2}\) \(\left(x\ge1\right)\)
\(\Leftrightarrow x-2\sqrt{x-1}+x+2\sqrt{x-1}+2\sqrt{\left(x-2\sqrt{x-1}\right)\left(x+2\sqrt{x-1}\right)}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-4\left(x-1\right)}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-4x+4}=4\)
\(\Leftrightarrow2|x-2|=4-2x\)(1)
Với \(x\ge2\) thì (1) \(\Leftrightarrow2x-4=4-2x\Leftrightarrow4x=8\Leftrightarrow x=2\)
Với \(1\le x< 2\) thì (1) \(\Leftrightarrow2\left(2-x\right)=4-2x\Leftrightarrow4-2x=4-2x\) (luôn đg)
Vậy x = 2
\(\left(x^2+1\right)+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)+2.1,5x.\left(x^2+1\right)+\left(1,5x\right)^2-0,25x^2=0\)
\(\Leftrightarrow\left(x^2+1,5x+1\right)^2-\left(0,5x\right)^2=0\)
\(\Leftrightarrow\left(x^2+1,5x+1-0,5x\right)\left(x^2+1,5x+1+0,5x\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x+1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\\\left(x+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+\frac{1}{4}+\frac{3}{4}=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
Vậy nghiệm của phương trình là x = -1.
Lời giải:
\((x^2-1)(x^2-25)=25x^2\)
\(\Leftrightarrow x^4-26x^2+25=25x^2\)
\(\Leftrightarrow x^4-51x^2+25=0\)
\(\Leftrightarrow a^2-51a+25=0\) (đặt \(a=x^2)\)
\(\Leftrightarrow (a-\frac{51}{2})^2=\frac{2501}{4}\Rightarrow a-\frac{51}{2}=\pm \frac{\sqrt{2501}}{2}\)
\(\Rightarrow a=\frac{51\pm \sqrt{2501}}{2}\)
\(\Rightarrow x=\pm \sqrt{\frac{51\pm \sqrt{2501}}{2}}\)
Lời giải:
\((x^2-1)(x^2-25)=25x^2\)
\(\Leftrightarrow x^4-26x^2+25=25x^2\)
\(\Leftrightarrow x^4-51x^2+25=0\)
\(\Leftrightarrow a^2-51a+25=0\) (đặt \(a=x^2)\)
\(\Leftrightarrow (a-\frac{51}{2})^2=\frac{2501}{4}\Rightarrow a-\frac{51}{2}=\pm \frac{\sqrt{2501}}{2}\)
\(\Rightarrow a=\frac{51\pm \sqrt{2501}}{2}\)
\(\Rightarrow x=\pm \sqrt{\frac{51\pm \sqrt{2501}}{2}}\)