\(x^2-1=2x\sqrt{x^2-2x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

​ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)0x2+5x360[x4x9

pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36ptx2+5x+6=x2+5x36

Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t0) , phương trình trở thành:

t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t242t2t42=0(t+6)(t7)=0

\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.[t=6(ktmđk)t=7

Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7x2+5x+6=7x2+5x+6=49

\Rightarrow x^2+5x-43=0x2+5x43=0

\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)x=25+197x=25197(tmđk)

Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={25+197;25197}

​ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)0x2+5x360[x4x9

pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36ptx2+5x+6=x2+5x36

Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t0) , phương trình trở thành:

t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t242t2t42=0(t+6)(t7)=0

\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.[t=6(ktmđk)t=7

Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7x2+5x+6=7x2+5x+6=49

\Rightarrow x^2+5x-43=0x2+5x43=0

\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)x=25+197x=25197(tmđk)

Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={25+197;25197}

​ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)0x2+5x360[x4x9

pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36ptx2+5x+6=x2+5x36

Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t0) , phương trình trở thành:

t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t242t2t42=0(t+6)(t7)=0

\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.[t=6(ktmđk)t=7

Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7x2+5x+6=7x2+5x+6=49

\Rightarrow x^2+5x-43=0x2+5x43=0

\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)x=25+197x=25197(tmđk)

Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={25+197;25197}

​ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)0x2+5x360[x4x9

pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36ptx2+5x+6=x2+5x36

Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t0) , phương trình trở thành:

t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t242t2t42=0(t+6)(t7)=0

\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.[t=6(ktmđk)t=7

Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7x2+5x+6=7x2+5x+6=49

\Rightarrow x^2+5x-43=0x2+5x43=0

\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)x=25+197x=25197(tmđk)

Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={25+197;25197}

​ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)0x2+5x360[x4x9

pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36ptx2+5x+6=x2+5x36

Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t0) , phương trình trở thành:

t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t242t2t42=0(t+6)(t7)=0

\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.[t=6(ktmđk)t=7

Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7x2+5x+6=7x2+5x+6=49

\Rightarrow x^2+5x-43=0x2+5x43=0

\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)x=25+197x=25197(tmđk)

Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={25+197;25197}

​ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)0x2+5x360[x4x9

pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36ptx2+5x+6=x2+5x36

Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t0) , phương trình trở thành:

t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t242t2t42=0(t+6)(t7)=0

\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.[t=6(ktmđk)t=7

Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7x2+5x+6=7x2+5x+6=49

\Rightarrow x^2+5x-43=0x2+5x43=0

\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)x=25+197x=25197(tmđk)

Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={25+197;25197}

​ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)0x2+5x360[x4x9

pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36ptx2+5x+6=x2+5x36

Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t0) , phương trình trở thành:

t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t242t2t42=0(t+6)(t7)=0

\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.[t=6(ktmđk)t=7

Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7x2+5x+6=7x2+5x+6=49

\Rightarrow x^2+5x-43=0x2+5x43=0

\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)x=25+197x=25197(tmđk)

Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={25+197;25197}

​ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)0x2+5x360[x4x9

pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36ptx2+5x+6=x2+5x36

Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t0) , phương trình trở thành:

t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t242t2t42=0(t+6)(t7)=0

\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.[t=6(ktmđk)t=7

Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7x2+5x+6=7x2+5x+6=49

\Rightarrow x^2+5x-43=0x2+5x43=0

\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)x=25+197x=25197(tmđk)

Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={25+197;25197}

​ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)0x2+5x360[x4x9

pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36ptx2+5x+6=x2+5x36

Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t0) , phương trình trở thành:

t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t242t2t42=0(t+6)(t7)=0

\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.[t=6(ktmđk)t=7

Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7x2+5x+6=7x2+5x+6=49

\Rightarrow x^2+5x-43=0x2+5x43=0

\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)x=25+197x=25197(tmđk)

Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={25+197;25197}

​ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)0x2+5x360[x4x9

pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36ptx2+5x+6=x2+5x36

Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t0) , phương trình trở thành:

t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t242t2t42=0(t+6)(t7)=0

\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.[t=6(ktmđk)t=7

Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7x2+5x+6=7x2+5x+6=49

\Rightarrow x^2+5x-43=0x2+5x43=0

\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)x=25+197x=25197(tmđk)

Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={25+197;25197}​ĐK: 

\left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)0x2+5x360[x4x9

pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36ptx2+5x+6=x2+5x36

Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t0) , phương trình trở thành:

t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t242t2t42=0(t+6)(t7)=0

\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.[t=6(ktmđk)t=7

Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7x2+5x+6=7x2+5x+6=49

\Rightarrow x^2+5x-43=0x2+5x43=0

\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)x=25+197x=25197(tmđk)

Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={25+197;25197}

nếu vế phải là \(2\sqrt{2}\)thì làm như này: 

Ta có: \(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)

\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\) (bình phương cả 2 vế rùi khai triển dựa trên hằng đẳng thức)

\(\Leftrightarrow2x+2x-2=8\Leftrightarrow4x=10\Leftrightarrow x=\frac{2}{5}\)

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

4 tháng 7 2019

1   ĐKXD \(x\ge1\)

.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)

Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)

=> \(2b^2+3a^2=2x^2+5x-1\)

=> \(2b^2+3a^2-7ab=0\)

<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)

\(a=2b\)

=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)

=> \(4x^2+3x+5=0\)vô nghiệm

\(a=\frac{1}{3}b\)

=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)

=> \(x^2-8x+10=0\)

<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)

Vậy \(x=4+\sqrt{6}\)

4 tháng 7 2019

ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)

\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)

<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)

 \(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)

<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)

Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)

nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)

Vậy x=-2

Em kiểm tra lại đề bài câu trên nhé

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}=1\)

Mà \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}\ge1\)

nên dấu "=" <=> x = -1

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

<=> \(\sqrt{x^2+2x+1}=1-\sqrt{x^4-2x^2+2}\)

<=> \(\left(\sqrt{x^2+2x+1}\right)^2=\left(1-\sqrt{x^4-2x^2+2}\right)^2\)

<=> x2 + 2x + 1 = x4 - 2x2 + 3 - 2\(\sqrt{x^4-2x^2+2}\)

<=> x2 + 2x + 1 - (x4 - 2x) = -2\(\sqrt{x^4-2x^2+2}\) - (x4 - 2x)

<=> -x4 + 3x2 + 1 = -2\(\sqrt{x^4-2x^2+2}+3\)

<=> -x4 + 3x+ 1 - 3 = -2\(\sqrt{x^4-2x^2+2}\)

<=> (-x4 + 3x2 - 2)2 = (-2\(\sqrt{x^4-2x^2+2}\))2

<=> x8 - 6x6 - 4x5 + 13x4 + 12x3 - 8x2 - 8x + 4 = 4x4 - 8x2 + 8

<=> x = -1

=> x = -1

4 tháng 6 2019

Bình phương cả 2 vế rồi đặt ẩn phụ là ra

5 tháng 6 2019

\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)(ĐK:\(x>\frac{1}{2}\))

\(\Leftrightarrow x^2+2x+2x-1+2\sqrt{\left(x^2+2x\right)\left(2x-1\right)}=3x^2+4x+1\)(BP 2 vế)

\(\Leftrightarrow2\sqrt{2x^3-x^2+4x^2-2x}=2x^2+2\)

\(\Leftrightarrow\sqrt{2x^3+2x+3x^2+3-4x-3}=x^2+1\)

Đặt \(x^2+1=t\)

pt\(\Leftrightarrow\sqrt{2xt+3t-\left(4x+3\right)}=t\)

\(\Leftrightarrow2xt+3t-4x-3=t^2\)

\(\Leftrightarrow t^2-t\left(2x+3\right)+4x+3=0\)

\(\Delta=\left(2x+3\right)^2-4.\left(4x+3\right)=4x^2+12x+9-16x-12=4x^2-4x-3\)

\(\hept{\begin{cases}t_1=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\\t_2=\frac{2x+3+\sqrt{4x^2-4x-3}}{2}\end{cases}}\)

TH1:\(t=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\)

\(\Rightarrow2x^2+2=2x+3-\sqrt{4x^2-4x-3}\)

\(\Leftrightarrow2x^2+2=2x+3-\sqrt{4x^2+4x-8x-3}\)

\(\Leftrightarrow2t=2x+3-\sqrt{4t-8x-3}\)

Giải ra rồi thay TH2

4 tháng 3 2018

hello bạn

29 tháng 10 2018

ĐKXĐ:\(x\ge\frac{1}{2}\)

Khi đó pt đã cho 

\(\Leftrightarrow x-\sqrt{2x-1}+x+\sqrt{2x-1}\)+\(2\sqrt{\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)}=8\)

\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\)

\(\Leftrightarrow x+\sqrt{\left(x-1\right)^2}=4\)

\(\Leftrightarrow x+|x-1|=4\)     (1)

TH1:\(\frac{1}{2}\le x< 1\)

Khi đó pt (1)\(\Leftrightarrow x+1-x=4\)

                 \(\Leftrightarrow1=4\)(Vô lý)

TH2 :x\(\ge1\)

Khi đó pt (1) \(\Leftrightarrow x+x-1=4\)

\(\Leftrightarrow2x=5\)

\(\Leftrightarrow x=\frac{5}{2}\)(tm ĐKXĐ)

Vậy pt đã cho có tập nghiệm S=(\(\frac{5}{2}\))

29 tháng 10 2018

ĐKXĐ : \(x\ge\frac{1}{2}\)

\(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)

\(\Leftrightarrow\)\(\left(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}\right)^2=\left(2\sqrt{2}\right)^2\)

\(\Leftrightarrow\)\(x-\sqrt{2x-1}+2\sqrt{\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)}+x+\sqrt{2x-1}=8\)

\(\Leftrightarrow\)\(x+\sqrt{x^2-2x+1}=4\)

\(\Leftrightarrow\)\(x+\left|x-1\right|=4\)

+) Với \(\hept{\begin{cases}x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có : 

\(x+x-1=4\)

\(\Leftrightarrow\)\(x=\frac{5}{2}\) ( thỏa mãn ) 

Với \(\hept{\begin{cases}x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 1\end{cases}\Leftrightarrow}x< 0}\) ta có : 

\(-x-x+1=4\)

\(\Leftrightarrow\)\(x=\frac{-3}{2}\) ( ko thỏa mãn ĐKXĐ ) 

Vậy \(x=\frac{5}{2}\)

Chúc bạn học tốt ~