K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

a)x=-17

b)x=9/10

c)x=4\(\frac{1}{3}\)

tick đi giải chi tiết cho

14 tháng 1 2016

a)Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau

7x+35/3=2x+6/1=>(7x+35)1=3(2x+6)

=>x=-17

b)Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau

17x+19/20=27x+10/20=>(17x+19)20=20(27x+10)

c)<=>(x-2)^3+(x-4)^3+(x-7)^3+(-3)(x-2)(x-4)(x-7)=19(3x-13)

=>19(3x-13)=0

rút gọn 57x=247

=>19.3x=19.13

=>3x=13

=>x=13/3

=>x=4\(\frac{1}{3}\)

 

 

 

4 tháng 7 2019

\(2x^4-10x^2+17=2\left(x^4-5x^2+\frac{25}{4}\right)+\frac{9}{2}=2\left(x^2-\frac{5}{2}\right)^2+\frac{9}{2}>0\left(vl\right)\)

=> PT vô nghiệm

4 tháng 7 2019

\(x^4-x^3+2x^2-x+1=x^2\left(x^2-x+1\right)+x^2-x+1=\left(x^2-x+1\right)\left(x^2+1\right)=\left(x^2+1\right)\left(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\forall x\)=> Pt vô nghiệm

21 tháng 6 2016

+) <=> \(x^3-3x^2+3x-1+3x^2+6x+8-x^3=17\)

<=>9x=10

<=> x=\(\frac{10}{9}\)

+) \(x\left(x^2-25\right)-x^3-8=3\)<=> \(x^3-x^3-25x=3+8\)

<=> x=\(-\frac{11}{25}\)

21 tháng 6 2016

câu đầu tiên hình như sai 

 

15 tháng 8 2016

cảm ơn bn nhiều!

NV
10 tháng 11 2019

a/ Đặt \(a=x+7\) pt trở thành:

\(\left(a-1\right)^4+\left(a+1\right)^4=272\)

\(\Leftrightarrow2a^4+12a^2+2=272\)

\(\Leftrightarrow a^4+6a^2-135=0\Rightarrow\left[{}\begin{matrix}a^2=9\\a^2=-15\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+7=3\\x+7=-3\end{matrix}\right.\)

b/ Tương tự, đặt \(x-\frac{7}{2}=a\)

\(\left(a-\frac{3}{2}\right)^4+\left(a+\frac{3}{2}\right)^4=17\)

\(\Leftrightarrow2a^4+27a^2+\frac{81}{16}=17\)

Bạn tự giải tiếp

10 tháng 11 2019

Bạn ơi câu b bạn làm nốt cho mình được ko? Mình chưa hiểu lắm

20 tháng 6 2015

cho mjk đúng với    

20 tháng 6 2015

x=16 nên 

17=x+17

=>B=x4-(x+1)x3+(x+1)x2-(x-1)x+20

=x4-x4-x3+x3+x2-x2-x+20

=-x+20

thay x=16 ta được 

B=-16+20=4

vậy B=4 tại x=16

21 tháng 2 2020

a,Thay k=4 vào pt (1) ta đc

x2+4*4x-17=0

<=>x2+16x-17=0

<=>x2-x+17x-17=0

<=>(x2-x)+(17x-17)=0

<=>x(x-1)+17(x-1)=0

<=>(x+17)(x-1)=0

<=>x+17=0 hoặc x-1=0

*x+17=0             *x-1=0

<=>x=-17           <=>x=1

vậy k=4 thì pt có tập nghiệm S={-17;1}

2 ý sau cũng thay và làm 

30 tháng 1 2017

a) (x-1)x(x+1)(x+2) = 24

<=> [(x-1)(x+2)][x(x+1) = 24

<=> (x^2+x-2)(x^2+x) = 24     (1)

Đặt t=x^2+x-1 = (x+1/2)^2 - 5/4    (*)

(1) trở thành (t-1)(t+1) = 24

<=> t^2 - 1 - 24 = 0

<=> t^2 - 25 = 0

<=> t^2 = 25

<=> t=5 hoặc t=-5

Mà t >= -5/4 ( từ *) => t = (x+1/2)^2-5/4 = 5

<=> (x+1/2)^2 = 25/4

Đến đây dễ r`

30 tháng 1 2017

c) x^4 + 3x^3 + 4x^2 + 3x + 1 = 0

<=> x^4 + x^3 + 2x^3 + 2x^2 + 2x^2 + 2x + x + 1 = 0

<=> (x+1)(x^3 + 2x^2 + 2x + 1) = 0

<=> (x +1)(x^3 + x^2 + x^2 + x + x + 1) = 0

<=> (x+1)^2.(x^2+x+1) = 0

Mà x^2+x+1 = (x+1/2)^2 + 3/4 > 0

Nên x+1=0 <=> x=-1

Vậy ...