\((x+1)^4+(x-3)^4=82\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 6 2019

Đặt \(x-1=a\) phương trình trở thành:

\(\left(a+2\right)^4+\left(a-2\right)^4=82\)

\(\Leftrightarrow a^4+8a^3+24a^2+32a+16+a^4-8a^3+24a^2-32a+16=82\)

\(\Leftrightarrow2a^4+48a^2+32=82\)

\(\Leftrightarrow a^4+24a^2-25=0\Rightarrow\left[{}\begin{matrix}a^2=1\\a^2=-25\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

24 tháng 2 2018

\(\left(x+4\right)^4+\left(x+6\right)^4=82\)

Đặt a = x + 5

Ta có:

\(\left(x+4\right)^4+\left(x+6\right)^4=82\)

\(\Leftrightarrow\left(a-1\right)^4+\left(a+1\right)^4\)

\(\Leftrightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=82\)

\(\Leftrightarrow\left(a^2-2a+1\right)^2+\left(a+2a+1\right)^2=82\)

\(\Leftrightarrow\left(a^2+1\right)^2-4a\left(a^2+1\right)+4a^2+\left(a^2+1\right)^2+4a\left(a^2+a\right)+4a^2=82\) \(\Leftrightarrow\left(a^2+1\right)^2+4a^2=41\)

\(\Leftrightarrow a^4+6a^2+1=41\)

\(\Leftrightarrow a^4+6a^2-40a=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2=-10\left(loại\right)\\a^2=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-7\end{matrix}\right.\)

24 tháng 2 2018

khúc \(a^4+6a^2-40\) bạn làm hơi nhanh, mà thôi kệ. Thanks!!!

28 tháng 6 2019

Đặt \(y=x+4\). PT trở thành:

\(\left(y-1\right)^4+\left(y+1\right)^4=16\)

Đặt y - 1 = a ; y + 1 =b. Suy ra b-a = 2

Kết hợp đề bài ta có:

\(\left\{{}\begin{matrix}a^4+b^4=16\\b-a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(4+2ab\right)^2-2a^2b^2=16\\a^2+b^2=4+2ab\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a^2b^2+16ab=0\left(1\right)\\a^2+b^2=4+2ab\end{matrix}\right.\). Xét pt (1):\(\Leftrightarrow2ab\left(ab+8\right)=0\)

Ez rồi

28 tháng 6 2019

Đặt \(y=x-\frac{3}{2}\). PT trở thành:

\(\left(y+\frac{1}{2}\right)^4+\left(y-\frac{1}{2}\right)^4=1\)

Đặt \(y+\frac{1}{2}=a;y-\frac{1}{2}=b\) suy ra \(\left\{{}\begin{matrix}a^4+b^4=1\\a-b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2-2a^2b^2=1\\a^2-2ab+b^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+2ab\right)^2-2a^2b^2=1\\a^2+b^2=1+2ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4ab+1=1\\a^2+b^2=1+2ab\end{matrix}\right.\)

\(\Leftrightarrow ab=0\left(\text{từ phương trình thứ nhất của hệ}\right)\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\).

Với a = 0 thì \(y=-\frac{1}{2}\) hay \(x-\frac{3}{2}=-\frac{1}{2}\Leftrightarrow x=1\)

Với b = 0 thì\(y=\frac{1}{2}\Leftrightarrow x-\frac{3}{2}=\frac{1}{2}\Leftrightarrow x=2\)

Vậy ...

28 tháng 6 2019

tth gioir :))

27 tháng 6 2019

Đặt x + 4 = t thì pt trở thành :

\(\left(t+1\right)^4+\left(t-1\right)^4=16\)

\(\Leftrightarrow\left(t^4+4t^3+6t^2+4t+1\right)-\left(t^4-4t^3+6t^2-4t+1\right)=16\)

\(\Leftrightarrow8t^3+8t-16=0\)

\(\Leftrightarrow8\left[t^2\left(t-1\right)+t\left(t-1\right)+2\left(t-1\right)\right]=0\)

\(\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\)

\(\Leftrightarrow t-1=0\) ( do \(t^2+t+2=\left(t+\frac{1}{2}\right)^2+\frac{7}{4}>0\forall t\))

\(\Leftrightarrow t=1\Leftrightarrow x=-3\) ( TM )

26 tháng 8 2016

ĐK: \(\hept{\begin{cases}x^3+2x+4\ge0\\x^3-2x+4\ge0\end{cases}}\)

Đặt: \(\hept{\begin{cases}a=\sqrt{x^3+2x+4}\left(a\ge0\right)\\b=\sqrt{x^3-2x+4}\left(b\ge0\right)\end{cases}\Rightarrow\hept{\begin{cases}a^2=x^3+2x+4\\b^2=x^3-2x+4\end{cases}}\Rightarrow a^2-b^2=4x\Rightarrow x=\frac{a^2-b^2}{4}}\) 

\(pt\Leftrightarrow\left[1+\left(\frac{a^2-b^2}{4}\right)\right]a+\left[1-\left(\frac{a^2-b^2}{4}\right)\right]b=4\) 

\(\Leftrightarrow\left(4+a^2-b^2\right)a+\left(4-a^2+b^2\right)b=16\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=16\) (1)

Từ pt, ta có: \(\left(1+x\right)a-\left(1-x\right)b=4\)

\(\Leftrightarrow a+b+\left(a-b\right)x=4\) (2)

Thay (1) và (2) vào, ta có:

\(\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=4\left[a+b+\left(a-b\right)x\right]\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=4\left(a-b\right)x\)

\(\Leftrightarrow\left(a-b\right)\left[\left(a+b\right)\left(a-b\right)-4x\right]=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2-4x\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a^2-b^2=4x\end{cases}}\)

Với \(a=b\) , ta có: \(\sqrt{x^3+2x+4}=\sqrt{x^3-2x+4}\Leftrightarrow x=0\left(TM\right)\)

Với \(a^2-b^2=4x\) , ta có: \(x^3+2x+4-\left(x^3-2x+4\right)=4x\)

\(\Leftrightarrow4x=0\)

\(\Rightarrow x=0\)

Vậy:.........


 

26 tháng 8 2016

Lớp mấy đây, lớp 8 mà đây á

19 tháng 5 2020

Giải phương trình:

\(\frac{x+1}{58}+\frac{x+2}{57}=\frac{x+3}{56}+\frac{x+4}{55}\)

\(\Leftrightarrow\left(\frac{x+1}{58}+1\right)+\left(\frac{x+2}{57}+1\right)=\left(\frac{x+3}{56}+1\right)+\left(\frac{x+4}{55}+1\right)\)

\(\Leftrightarrow\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)

\(\Leftrightarrow\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)

\(\Leftrightarrow x+59=0\) \(\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\ne0\right)\)

\(\Leftrightarrow x=-59\)

Vậy : \(S=\left\{-59\right\}\)

19 tháng 5 2020

\(\frac{x+1}{58}+\frac{x+2}{57}=\frac{x+3}{56}+\frac{x+4}{55}\)

\(\Leftrightarrow\) \(\frac{x+1}{58}+1+\frac{x+2}{57}+1=\frac{x+3}{56}+1+\frac{x+4}{55}+1\)

\(\Leftrightarrow\) \(\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)

\(\Leftrightarrow\) \(\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)

\(\Leftrightarrow\) (x + 59)(\(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\)) = 0

\(\Leftrightarrow\) x + 59 = 0

\(\Leftrightarrow\) x = -59

Vậy S = {-59}

Chúc bn học tốt!!

28 tháng 6 2019

Nhận thấy x = 0 không phải là nghiệm.

Xét x khác 0.Chia hai vế của pt cho x2 ta được:

\(x^2-3x-6+\frac{3}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-3\left(x-\frac{1}{x}\right)-6=0\)

Đặt \(x-\frac{1}{x}=a\). PT trở thành:

\(a^2-3a-4=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-1\end{matrix}\right.\)

Với a = 4 thì \(x=4+\frac{1}{x}=\frac{4x+1}{x}\Leftrightarrow x^2-4x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{matrix}\right.\) (nghiệm xấu chút nhưng dễ giải lắm ạ)

Với a = -1 thì \(x=\frac{1}{x}-1=\frac{1-x}{x}\Leftrightarrow x^2+x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\) (cái này thì max xấu rồi ;( )

28 tháng 6 2019

tth gioir :)

16 tháng 1 2019

2.a)\(\dfrac{3\text{x}-2}{2}\)=\(\dfrac{1-2\text{x}}{3}\)

<=>\(\dfrac{9\text{x}-6}{6}\)=\(\dfrac{2-4\text{x}}{6}\)

<=>9x-6=2-4x

<=>9x+4x=2+6

<=>13x=8

<=>x=\(\dfrac{8}{13}\)

16 tháng 1 2019

1.a)2(x-0,5)+3=0,25(4x-1)

<=>2x-1+3=x-1phần4

<=>2x-x=-1/4+1-3

<=>x=-3/4