Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đã cho tương đương với :
\(5^{\left(x+2\right)\left(x+1\right)}+5^{x\left(x+3\right)}=2^{\left(x+1\right)\left(x+5\right)}-6.2^{\left(x+6\right)x}\)
\(\Leftrightarrow5^{x^2+3x+2}+5^{x^2+3x}=2^{x^2+6x+5}-6.2^{x^2+6x}\)
\(\Leftrightarrow26.5^{x^2+3x}=26.2^{x^2+6x}\)
\(\Leftrightarrow5^{x^2+3x}=2^{x^2+6x}\)
\(\Leftrightarrow\left(x^2+3x\right)\log_25=x^2+6x\)
\(\Leftrightarrow x\left[\left(x+3\right)\log_25-\left(x+6\right)\right]=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{6-3\log_25}{\log_25-1}=\log_{\frac{5}{2}}\frac{64}{125}\end{array}\right.\)
Đặt \(p=x+y+z\)
\(q=xy+zy+zx\)
\(r=xyz\)
Ta có :
\(2q=\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)=4-6=-2\Rightarrow q=-1\)
Bây giờ ta sẽ đi tìm r
Đặt \(S_n=x^n+y^n+z^n\)
Khi đó \(S_0=3\)
\(S_1=-2\)
\(S_2=6\)
Ta có :
\(S_n-\left(x+y+z\right)S_{n-1}+\left(xy+yz+zx\right)S_{n-2}-xýzS_{n-3}=0\)
Suy ra \(S_n=-2S_{n-1}+S_{n-2}+rS_{n-3}\)
Lấy n = 3, ta được :
\(S_3=-2S_2+S_1+rS_0=-14+3r\)
Lấy n = 4, ta được :
\(S_4=-2S_3+S_2+rS_1=28-6r+6-2r=34-8r\)
Lấy n = 5, ta được :
\(S_5=-2S_4+S_3+rS_2=-68+16r-14+3r+6r=-82+25r\)
Mà \(S_5=-32\) nên r = 2.
Do đó x, y, z là nghiệm của phương trình
\(t^3+2t^2-t-2=0\Leftrightarrow t\in\left\{1;-1;-2\right\}\)
Vậy nghiệm của hệ là \(\left\{1;-1;-2\right\}\) và các hoán vị của nó
Từ bất phương trình ban đầu \(\Leftrightarrow25.5^x-5.5^x>9.3^x-3.3^x\)
\(\Leftrightarrow20.5^x>6.3^x\)
\(\Leftrightarrow\left(\frac{5}{3}\right)^x>\frac{3}{10}\)
\(\Leftrightarrow x>\log_{\frac{5}{3}}\frac{3}{10}\)
\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)
\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)
Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)
Phương trình trở thành :
\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)
a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)
Vậy phương trình có nghiệm là \(x=0\)
b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)
Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]
Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)
t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2
Suy ra phương trình đã cho có nghiệm đúng
\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)
Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm
Bất phương trình tương đương với :
\(\left(\frac{4}{5}\right)^x+\left(\frac{3}{5}\right)^x>1\)
Xét hàm số \(f\left(x\right)=\left(\frac{4}{5}\right)^x+\left(\frac{3}{5}\right)^x;f'\left(x\right)=\left(\frac{4}{5}\right)^x\ln\frac{4}{5}+\left(\frac{3}{5}\right)^x\ln\frac{3}{5}\)
Suy ra hàm số đồng biến trên R
Do đó bất phương trình \(\Leftrightarrow f\left(x\right)>f\left(2\right)\Leftrightarrow x< 2\)
Vậy BPT có tập nghiệm \(S=\left(-\infty;2\right)\)
*Với x\(\ge\)2 PT trở thành: x.(x-2)+(2x+5)=8
<=>x2-2x+2x+5=8
<=>x2=3
<=>\(x=\sqrt{3}\left(loại\right)\text{ hoặc }x=-\sqrt{3}\left(loại\right)\)
*Với \(-\frac{5}{2}\le x<2\) PT trở thành: x.(2-x)+(2x+5)=8
<=>2x-x2+2x+5=8
<=>-x2+4x-3=0
<=>-x2+3x+x-3=0
<=>-x.(x-3)+(x-3)=0
<=>(x-3)(1-x)=0
<=>x=3 (loại) hoặc x=1
*Với x<-5/2 PT trở thành: x.(2-x)-(2x+5)=8
<=>2x-x2-2x-5=8
<=>x2=-13 (vô lí)
Vậy S={1}
\(\sqrt{x+1}=5-\sqrt{2x+3}\)
ĐK: x\(\ge\)1
\(\sqrt{x+1}=5-\sqrt{2x+3}\Leftrightarrow\sqrt{2x+3}=5-\sqrt{x+1}\)
\(\Leftrightarrow2x+3=25-2\sqrt{x+1}+x+1\Leftrightarrow x-23=-2\sqrt{x+1}\)
\(\Leftrightarrow x^2-46x+529=4x+4\Leftrightarrow x^2-50+525\)
\(\Delta=400\Rightarrow\sqrt{\Delta}=20\)
\(\Delta>0,PT\text{ có 2 nghiệm pb: }x_1=35;x_2=15\)
Vậy S={15;35}
Đây là cách làm của em, nếu sai nhờ anh chỉ giáo:
ĐK: Với mọi x thuộc R
\(\left(x+5\right)\sqrt{2x^2+1}=x^2+x+5\Leftrightarrow\left(x+5\right)\sqrt{2x^2+1}=\frac{1}{2}\left(2x^2+1\right)+\left(x+5\right)-\frac{1}{2}..\)
Đặt: \(\hept{\begin{cases}a=x+5\\b=\sqrt{2x^2+1};b\ge0\end{cases}}\), ta có pttt:
\(ab=\frac{1}{2}a^2+b-\frac{1}{2}\Leftrightarrow\frac{1}{2}a^2-\frac{1}{2}-ab+b=0\Leftrightarrow\frac{1}{2}\left(a^2-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left[\frac{1}{2}\left(a+1\right)-b\right]=0\Leftrightarrow[\begin{cases}a=1\\\frac{a+1}{2}=b\end{cases}\)
+) \(a=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\)
+) \(\frac{a+1}{2}=b\Leftrightarrow\frac{x+5+1}{2}=\sqrt{2x^2+1}\Leftrightarrow x+6=2\sqrt{2x^2+1}\)
\(\Rightarrow x^2+12x+36=8x^2+4\Leftrightarrow7x^2-12x-32=0\Leftrightarrow x=\frac{6\pm2\sqrt{65}}{7}.\)
Vậy x = 1 hoặc \(x=\frac{6\pm2\sqrt{65}}{7}.\)
sai òi nè , đáp án có 3 nghiệm nha bạn , \(x=\sqrt{41};x=0;x=-9\)
\(\frac{4-x}{x-5}=\frac{1}{1-x}\) (1)
Điều kiện :
\(\frac{4-x}{x-5}=\frac{1}{1-x}\) \(\Leftrightarrow x\notin\left\{1;5\right\}\)
Với điều kiện đó ta có
\(\frac{4-x}{x-5}=\frac{1}{1-x}\Leftrightarrow\left(4-x\right)\left(1-x\right)=x-5\Leftrightarrow x^2-6x+9=0\Leftrightarrow x=3\)
Nghiệm x=3 thỏa mãn điều kiện \(x\notin\left\{1;5\right\}\)
Vậy T(1) = \(\left\{3\right\}\)
\(\frac{4-x}{x-5}=\frac{1}{1-x}\left(x\ne5;1\right)\)
<=>\(\left(4-x\right)\left(1-x\right)=x-5\Leftrightarrow4-5x+x^2=x-5\)
<=>x2-6x+9=0
<=>(x-3)2=0
<=>x=3 (thỏa)
Vậy S={3}
a, ĐK x\(\ge5\) Đặt \(\sqrt{x-5}=y\Rightarrow x=y^2+5\)
Phương tình đã cho trở thành:\(y^2+5+y=y+6\)
\(\Leftrightarrow y^2-1=0\)
\(\Leftrightarrow y=-1;y=1\)
y=-1 loại vì \(\sqrt{x=5}\ge0\)
Ta có \(y=1\Rightarrow\sqrt{x-5}=1\Leftrightarrow x=6\)
b,làm tương tự câu a
c,ĐK:\(x\ge2\) Phương trình đã cho tương đương:\(\dfrac{x^2-8}{\sqrt{x-2}}=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=2\sqrt{2}\\x_2=-2\sqrt{2}\left(l\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=2\sqrt{2}\).
b) Đkxđ: \(\left\{{}\begin{matrix}1-x\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x=1\).
Thay x = 1 vào phương trình ta có:
\(\sqrt{1-1}+1=\sqrt{1-1}+2\)\(\Leftrightarrow1=2\) (vô lý).
Vậy phương trình vô nghiệm.
Điều kiện: x - 5 ≥ 0 ⇔ x ≥ 5
⇔ x = 6 (thỏa mãn điều kiện xác định)
Vậy phương trình có nghiệm là: x = 6