K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

Ta thấy x = 0 ko phải là nghiệm của pt => x khác 0

Chia cả 2 vế pt cho x^2 khác 0 ta được :

x^2-3x-6+3/x+1/x^2 = 0

<=> (x^2+1/x^2)-3.(x-1/x)-6 = 0

Đặt x-1/x = a => x^2+1/x^2 = a^2+2

pt trở thành : 

a^2+2-3a-6 = 0

<=> a^2-3a-4 = 0

<=> (a^2+a)-(4a+4) = 0

<=> (a+1).(a-4) = 0

<=> a=-1 hoặc a=4

<=> x-1/x = -1 hoặc x-1/x = 4

Đến đó nhân cả 2 vế với x mà tìm x nha

Tk mk nha

6 tháng 2 2018

x = 0 không là nghiệm của pt.

\(x\ne0\)

\(PT\Leftrightarrow x^2+\frac{1}{x^2}-3x+\frac{3}{x}+6=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2-3\left(x-\frac{1}{x}\right)+8=0\)<=> PT vô nghiệm

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

10 tháng 1 2016

a)<=>(x^2+x-3)(x^2+x-2)-12=(x-2)(x+3)(x^2+x+1)

TH1:=>x-2=0

=>x=2

TH2:x+3=0

=>x=-3

dựa vô bệt thức ta thấy

D<0=> phương trình ko có nghiệm thực

=>x=-3 hoặc 2

nhớ tick nhé

10 tháng 1 2016

a)x=-3 hoặc 2

 

16 tháng 4 2021

a)9x2 - 3 = ( 3x + 1 )( 2x - 3 )

<=> 9x2 - 3 = 6x2 - 7x  - 3

<=> 3x2 + 7x = 0

<=> x( 3x + 7 ) = 0 

<=> x = 0 hoặc x = -7/3

b) 6x2 - 13x + 6 = 0

<=> 6x2 - 9x - 4x + 6 = 0

<=> 3x( 2x - 3 ) - 2( 2x - 3 ) = 0

<=> ( 2x - 3 )( 3x - 2 ) = 0

<=> x = 3/2 hoặc x = 2/3

c) \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}\)( ĐKXĐ : x ≠ ±1 )

<=> \(\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

=> 3x + 3 = -3x - 2 - 4x + 4

<=> 10x = -1 <=> x = -1/10 (tm)

16 tháng 4 2021

a, \(9x^2-3=\left(3x+1\right)\left(2x-3\right)\Leftrightarrow9x^2-3=6x^2-9x+2x-3\)

\(\Leftrightarrow9x^2-3=6x^2-7x-3\Leftrightarrow3x^2+7x=0\Leftrightarrow x\left(3x+7\right)=0\Leftrightarrow x=0;x=-\frac{7}{3}\)

Vậy tập nghiệm của phương trình là S = { -7/3 ; 0 } 

b, \(6x^2-13x+6=0\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=0\Leftrightarrow x=\frac{2}{3};x=\frac{3}{2}\)

Vậy tập nghiệm của phương trình là S = { 2/3 ; 3/2 } 

c, \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}ĐK:x\ne\pm1\)

\(\Leftrightarrow\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow3x+3=-3x-2-4x+4\Leftrightarrow3x+3=-7x+2\)

\(\Leftrightarrow10x=-1\Leftrightarrow x=-\frac{1}{10}\)Vậy tập nghiệm của phương trình là S = { -1/10 } 

12 tháng 2 2016

b/ (12x + 7)2(3x + 2)(2x + 1) = 3

=> (144x2 + 168x + 49) (6x2 + 7x + 2) = 3 

- Nhân 2 vế cho 24 ta đc:

    (144x2 + 168x + 49) (144x2 + 168x + 48) = 72

- Đặt a = 144x2 + 168x + 48 , ta đc phương trình:

    (a + 1).a = 72

    => a2 + a - 72 = 0 

    => (a + 9)(a - 8) = 0

    => a = -9 hoặc a = 8

- Với a = -9 <=> 144x2 + 168x + 48 = -9 => 144x2 + 168x + 57 = 0 , mà 144x2 + 168x + 57 > 0 => pt vô nghiệm

- Với a = 8 <=> 144x2 + 168x + 48 = 8 => 144x2 + 168x + 40 = 0 => (3x + 1)(6x + 5) = 0 => x = -1/3 hoặc x = -5/6

Vậy x = -1/3 , x = -5/6

11 tháng 2 2016

muốn giải câu nào

8 tháng 7 2016

2/ (x+ x + 1) (x2+ x + 2) = 12

đặt x2 + x = t

thay vào đc: 

(t + 1) (t + 2) = 12

<=> t2 + 3t + 2 = 12

<=> t2 + 3t - 10 = 0

<=> t2 - 2t + 5t - 10 = 0

<=> t (t - 2) + 5 (t - 2) = 0

<=> (t + 5) (t - 2) = 0

=> {

t=−5

t=2

thay t đc:

*) x2 + x = -5  => x loại

*) x2 + x = 2 = x2 + x - 2 = x2 - 1 + x - 1 = (x - 1) (x + 1) + (x - 1) = (x - 1) (x + 2) 

=> x = 1 hoặc x = - 2

S = {-2 ; 1}

3/ (x- 6x + 4)- 15(x- 6x + 10) = 1

đặt x- 6x + 4 = t

có: t- 15(t + 6) = 1

<=> t2 - 15t - 91 = 0

8 tháng 7 2016

Câu 2 đặt ẩn phụ là x^2+x+2= a là đc

Câu 3 đặt ẩnphụ là x^2-6x+4= b là đc

27 tháng 12 2016

\(x^4-3x^3-6x+4=0\)

<=>\(\left(x^4+x^3+2x^2\right)-\left(4x^3+4x^2+8x\right)+\left(2x^2+2x+4\right)=0\)

<=>\(x^2\left(x^2+x+2\right)-4x\left(x^2+x+2\right)+2\left(x^2+x+2\right)=0\)

<=>\(\left(x^2+x+2\right)\left(x^2-4x+2\right)=0\)<=>\(\orbr{\begin{cases}x^2+x+2=0\\x^2-4x+2=0\end{cases}}\)

+)\(x^2+x+2=0\)

\(x^2+x+2=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{4}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

=> ko có x thỏa mãn x2+x+2=0

+)\(x^2-4x+2=0\)

\(x^2-4x+2=x^2-4x+4-2=\left(x-2\right)^2-2=0\)

<=>\(\left(x-2\right)^2=2\)<=>\(\orbr{\begin{cases}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{2}+2\\x=2-\sqrt{2}\end{cases}}\)

Vậy tập nghiệm pt \(S=\left\{2-\sqrt{2};\sqrt{2}+2\right\}\)