Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(2x^2=-x+3\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2-2x+3x-3=0\)
\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Thay x=1 vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot1^2=2\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)
Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)
Theo đề bài ta có: \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}-\frac{x-4}{5}-\frac{x-5}{6}>0\)
=> \(\frac{x-1}{2}+1+\frac{x-2}{3}+1+\frac{x-3}{4}+1-\left(\frac{x-4}{5}+1\right)-\left(\frac{x-5}{6}+1\right)>1\)
<=> \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}>1\)
<=>\(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>1\)
<=> \(\left(x+1\right)\cdot\frac{43}{60}>1\)
<=>\(x+1>\frac{60}{43}\)
<=> x>\(\frac{17}{43}\)
Vậy x>17/43
Xét x=0 ==> loại
Xét x\(\ne\)0,ta chia cả 2 vế cho x2 thu được:
4(x2+17x+60)(x2+16x+60)=3x2
4(x+\(\frac{60}{x}\)+17)(x+\(\frac{60}{x}\)+16)=3
Đặt x+\(\frac{60}{x}\)+16=t,ta được
4(t+1).t=3 <=> 4t2+4t-3=0 <=> t=\(\frac{1}{2}\)hoặc t=\(\frac{-3}{2}\)
Với t=1/2,ta có x+\(\frac{60}{x}\)+16=1/2 <=> x=-15/2 hoặc x=-8
Với t=-3/2,ta có x+\(\frac{60}{x}\)+16=-3/2 <=> ... bạn tự giải nốt nhé.
\(\frac{1}{x-1}+\frac{6}{3x+5}=\frac{2}{x+2}+\frac{1}{x+3}\)
\(\Leftrightarrow\frac{3x+5+6x-6}{3x^2+2x-5}=\frac{2x+6+x+2}{x^2+5x+6}\)
\(\Leftrightarrow\frac{9x-1}{3x^2+2x-5}=\frac{3x+8}{x^2+5x+6}\)
\(\Rightarrow9x^3+44x^2+49x-6=9x^3+30x^2+x-40\)
\(\Leftrightarrow14x^2-48x+34=0\)
\(\Rightarrow14x^2-14x-34x+34=0\)
\(\Rightarrow\left(x-1\right)\left(14x-34\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\14x-34=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{17}{7}\end{cases}}}\)
Ngu nên làm dài dòng thôi
\(PT\Leftrightarrow6\left(x+\sqrt{6x^2+6}\right)=-5x^2-2\sqrt{5}x-1\)
\(\Leftrightarrow6\left(x+\sqrt{6x^2+6}\right)=-\left(\sqrt{5}x+1\right)^2\)
\(\Rightarrow x+\sqrt{6x^2+6}\le0\)
(x-2)(x+1)(x-5)(x+6)=336
<=> (x2+x-2x-2)(x-5)(x+6)=336
<=> (x2-x-2)(x-5)(x+6)=336
<=> (x3-5x-x2+5x-2x+10)(x+6)=336
<=> (x3-x2-2x+10)(x+6)=336
<=>x4+6x3-x3-6x2-2x2-12x+10x+60=336
<=>x4+5x3-8x2-2x=276
mik mới nhân ra thôi :v bạn tìm cách nha