K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: x<>2 và y>=-1

\(\left\{{}\begin{matrix}\dfrac{1}{x-2}-2\sqrt{y+1}=-4\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{x-2}-4\sqrt{y+1}=-8\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-5\sqrt{y+1}=-15\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=3\\\dfrac{2}{x-2}=7-3=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y+1=9\\x-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=\dfrac{5}{2}\end{matrix}\right.\left(nhận\right)\)

22 tháng 1 2024

ai giải giúp mik ko, tự giải đi nè

a: \(\Leftrightarrow2\cdot5\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}+\dfrac{1}{7}\cdot7\sqrt{x-3}=20\)

=>\(10\cdot\sqrt{x-3}=20\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7

b: =>|x-3|=2

=>x-3=2 hoặc x-3=-2

=>x=5 hoặcx=1

16 tháng 9 2021

a) \(3x-2\sqrt{x-1}=4\) (ĐK: x ≥ 1)

\(\Rightarrow3x-2\sqrt{x-1}-4=0\)

\(\Rightarrow3x-6-2\sqrt{x-1}+2=0\)

\(\Rightarrow3\left(x-2\right)-2\left(\sqrt{x-1}-1\right)=0\)

\(\Rightarrow3\left(x-2\right)-2.\dfrac{x-2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow\left(x-2\right)\left[3-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)

*TH1: x = 2 (t/m)

*TH2: \(3-\dfrac{2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow3=\dfrac{2}{\sqrt{x-1}+1}\)

\(\Rightarrow3\sqrt{x-1}+3=2\)

\(\Rightarrow3\sqrt{x-1}=-1\) (vô lí)

Vậy S = {2}

b) \(\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\) (ĐK: \(-\dfrac{1}{4}\le x\le3\) )

\(\Rightarrow\sqrt{4x+1}-3-\sqrt{x+2}+2-\sqrt{3-x}+1=0\)

\(\Rightarrow\dfrac{4x-8}{\sqrt{4x+1}+3}-\dfrac{x-2}{\sqrt{x+2}+2}+\dfrac{x-2}{\sqrt{3-x}+1}=0\)

\(\Rightarrow\left(x-2\right)\left(\dfrac{4}{\sqrt{4x+1}+3}-\dfrac{1}{\sqrt{x+2}+2}+\dfrac{1}{\sqrt{3-x}+1}\right)=0\)

=> x = 2

 

 

 

16 tháng 9 2021

\(a,3x-2\sqrt{x-1}=4\left(x\ge1\right)\\ \Leftrightarrow-2\sqrt{x-1}=4-3x\\ \Leftrightarrow4\left(x-1\right)=16-24x+9x^2\\ \Leftrightarrow9x^2-28x+20=0\\ \Leftrightarrow\left(x-2\right)\left(9x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=\dfrac{10}{9}\left(tm\right)\end{matrix}\right.\)

\(b,\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\left(-\dfrac{1}{4}\le x\le3\right)\\ \Leftrightarrow4x+1+x+2-2\sqrt{\left(4x+1\right)\left(x+2\right)}=3-x\\ \Leftrightarrow-2\sqrt{\left(4x+1\right)\left(x+2\right)}=2-6x\\ \Leftrightarrow\sqrt{4x^2+9x+2}=3x-1\\ \Leftrightarrow4x^2+9x+2=9x^2-6x+1\\ \Leftrightarrow5x^2-15x-1=0\\ \Leftrightarrow\Delta=225+20=245\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15-\sqrt{245}}{10}=\dfrac{15-7\sqrt{5}}{10}\left(ktm\right)\\x=\dfrac{15+\sqrt{245}}{10}=\dfrac{15+7\sqrt{5}}{10}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{15+7\sqrt{5}}{10}\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:
ĐKXĐ: $x\geq -2$

PT $\Leftrightarrow 2\sqrt{x+2}+3\sqrt{4}.\sqrt{x+2}-\sqrt{9}.\sqrt{x+2}=10$

$\Leftrightarrow 2\sqrt{x+2}+6\sqrt{x+2}-3\sqrt{x+2}=10$

$\Leftrightarrow 5\sqrt{x+2}=10$

$\Leftrightarrow \sqrt{x+2}=2$

$\Leftrightarrow x+2=4$

$\Leftrightarrow x=2$ (tm)

4 tháng 6 2023

ĐKXĐ: x ≥ 2

Phương trình đã cho tương đương:

√(x - 2) + 6√(x - 2) - 2√(x - 2) = 10

⇔ 5√(x - 2) = 10

⇔ √(x - 2) = 2

⇔ x - 2 = 4

⇔ x = 6 (nhận)

Vậy S = {6}

15 tháng 10 2019

\(DK:x\notin\left(\frac{1-\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}\right)\)

PT

\(\Leftrightarrow\left(\sqrt{8x+1}-5\right)-\left(x^2-x-6\right)=0\)

\(\Leftrightarrow\frac{8\left(x-3\right)}{\sqrt{8x+1}+5}-\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{8}{\sqrt{8x+1}}-x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(1\right)\\\frac{8}{\sqrt{8x+1}+5}-x-2=0\left(2\right)\end{cases}}\)

\(\Leftrightarrow\left(x+2\right)\left(\sqrt{8x+1}+5\right)=8\left(DK:x>-2\right)\)

\(\Leftrightarrow\left(x+2\right)\sqrt{8x+1}+x+2=0\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{8x+1}+\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\sqrt{8x+1}+\sqrt{x+2}=0\)

\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{8}\\x=-2\end{cases}}\left(KTM\right)\)

Vay nghiem cua PT la \(x=3\)

16 tháng 10 2019

ĐK: \(x\ge-\frac{1}{8}\)

pt => \(\left(x^2-x-1\right)^2=8x+1\)

<=> \(x^4+x^2+1-2x^3+2x-2x^2=8x+1\)

<=> \(x^4-2x^3-x^2-6x=0\)

<=> \(x\left(x-3\right)\left(x^2+x+2\right)=0\)

<=> x = 0 hoặc x =3 (tm đk)

Thay x =0 vào ta có: -1 =1 loại

Thay x =3 vào pt thỏa mãn

Vậy x =3 là nghiệm phương trình.

@ Mai Link@ Em kiểm tra lại dòng thứ 4 từ dưới lên và đk.

20 tháng 12 2019

Điều kiện  1 ≤ x ≤ 7

Ta có:  x + 2 7 − x = 2 x − 1 + − x 2 + 8 x − 7 + 1

⇔ 2 7 − x − x − 1 + x − 1 − x − 1 7 − x = 0 ⇔ 2 7 − x − x − 1 + x − 1 x − 1 − 7 − x = 0 ⇔ 7 − x − x − 1 2 − x − 1 = 0 ⇔ x − 1 = 2 x − 1 = 7 − x ⇔ x = 5 x = 4 ( t / m )

Vậy phương trình có hai nghiệm x= 4 và x= 5

10 tháng 4 2017

Câu 1 x^2 - 8x +12 = 0 ( a = 1 ; b' = -4 ; c = 12 )

denta phẩy = b' bình - ac = (-4)^2 - 1*12 = 16 - 12 = 4 > 0

Do denta phẩy > 0 => pt có 2 ngiệm phân biệt

x một = -b' + căn denta phẩy tất cả trên a = 4 + căn 4 trên 1 = 6

x hai = -b' - căn denta phẩy tất cả trên a = 4 - căn 4 trên 1 = 2

KLuan 

Câu 2 

a) Với m = -1 =>  x^2 + 4x +3 = 0 ( a = 1 ; b= 4 ; c = 3)

     Xét a - b + c = 1 - 4 + 3 = 0 

       => x một = -1 ; x hai = -c trên a = -3 / 1 = -3

b)  denta = b^2 - 4ac = -( m - 3 ) tất cả mũ hai - 4 * 1 * ( - 2m + 1 )

                               = m^2 + 2m + 5 

                               = m^2 + 2m + 1/4 + 19/4 > hoặc = 19/4 >0

Vậy với mọi m thì pt có 2 nghiệm phân biệt 

CHÚC BẠN HỌC GIỎI NHA !!!!!!!!!!!!!!