Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a:
Đặt \(x-1=a\)thì pt trở thành \(\left(a+2\right)^4+\left(a-2\right)^4=82\), phá ra rồi giải pt tích
Vì (x-2,5)4 \(\ge\) 0 và (x-1,5)4 \(\ge\) 0 nên để (x-2,5)4+ (x-1,5)4 = 1 thì:
TH1: \(\left\{{}\begin{matrix}\left(x-2.5\right)^4=1\\\left(x-1.5\right)^4=0\end{matrix}\right.\Leftrightarrow x=1.5\)
TH2: \(\left\{{}\begin{matrix}\left(x-1.5\right)^4=1\\\left(x-2.5\right)^4=0\end{matrix}\right.\Leftrightarrow x=2.5\)
Vậy x = 1.5 và x = 2.5
a) (x+3)4+(x+5)4=16
<=>(x+3)4+(x+5)4=04+24
TH1: \(\left\{{}\begin{matrix}x+3=0\\x+5=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-3\end{matrix}\right.\Leftrightarrow x=-3\)
TH2:\(\left\{{}\begin{matrix}x+3=2\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)(loại)
b)(x-2)4+(x-3)4=1=04+14
TH1: \(\left\{{}\begin{matrix}x-2=0\\x-3=1\end{matrix}\right.\)loại
TH2: \(\left\{{}\begin{matrix}x-2=1\\x-3=0\end{matrix}\right.\)=>x=3.
c)(x+1)4+(x-3)4=82=34+(-1)4
làm tương tự => x=2.
d) làm tương tự câu b
a, 3x -2 = 2x - 3
=> 3x - 2x = 2 - 3
=> x= - 1
b, là tương tự câu a
các câu sau bạn nhân phá ra mà giải nhé
a, 3x - 2 = 2x - 3
3x - 2x = -3 + 2
x = -1
b, 3 - 4u + 24 + 6u = u + 27 + 3u
-4u + 6u - u - 3u = 27 - 3 - 24
-2u = 0
u = 0 : (-2)
u = 0
c, 5 - (x - 6) = 4(3 - 2x)
5 - x + 6 = 12 - 8x
-x + 8x = 12 - 5 - 6
7x = 1
x = 1/7
d, -6(1,5 - 2x) = 3(-15 + 2x)
-9 + 12x = -45 + 6x
12x - 6x = -45 + 9
6x = -36
x = (-36) : 6
x = -6
e, 0,1 - 2(0,5 - 0,1) = 2(t - 2,5) - 0,7
0,1 - 1 + 0,2 = 2t - 5 - 0,7
-2t = -5 - 0,7 - 0,1 + 1 - 0,2
-2t = -5
t = -5/-2
t = 5/2
bỏ mũ 4
(x-2,5)+(x-1,5)=1
(x-5/2)+(x-3/2)=1
[x+(-5/2]+[x+(-3/2]=1
x^2+[(-5/2)+(-3/2)]=1
x^2+(-4)=1
X^2=1-(-4)
x^2=5
x^2=2,5^2
vậy x=2,5
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
a: Ta có: \(8x+11-3=5x+x-3\)
\(\Leftrightarrow8x+8=6x-3\)
\(\Leftrightarrow2x=-11\)
hay \(x=-\dfrac{11}{2}\)
b: Ta có: \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow2x\left(x^3+6x^2+12x+8\right)-8x^2=2\left(x^3-8\right)\)
\(\Leftrightarrow2x^4+12x^3+24x^2+16x-8x^2-2x^3+16=0\)
\(\Leftrightarrow2x^4+10x^3+16x^2+16x+16=0\)
\(\Leftrightarrow2x^4+4x^3+6x^3+12x^2+4x^2+8x+8x+16=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^3+6x^2+4x+8\right)=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2
c: Ta có: \(\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\)
\(\Leftrightarrow2x^2-3x+2x-3-2x^2-10x+x+5=0\)
\(\Leftrightarrow-10x+2=0\)
\(\Leftrightarrow-10x=-2\)
hay \(x=\dfrac{1}{5}\)
d: Ta có: \(\dfrac{1}{10}-2\cdot\left(\dfrac{1}{2}t-\dfrac{1}{10}\right)=2\left(t-\dfrac{5}{2}\right)-\dfrac{7}{10}\)
\(\Leftrightarrow\dfrac{1}{10}-t+\dfrac{1}{5}=2t-5-\dfrac{7}{10}\)
\(\Leftrightarrow-t-2t=-\dfrac{57}{10}-\dfrac{3}{10}=-6\)
hay t=2
Đặt \(\left\{{}\begin{matrix}2,5-x=a\\x-1,5=b\end{matrix}\right.\).
Ta có hpt \(\left\{{}\begin{matrix}a+b=1\left(1\right)\\a^4+b^4=1\end{matrix}\right.\).
Do \(a^4,b^4\le1\Rightarrow-1\le a,b\le1\). (*)
Kết hợp với (1) ta có \(0\le a,b\le1\).
\(\Rightarrow\left\{{}\begin{matrix}a\ge a^4\\b\ge b^4\end{matrix}\right.\).
Do đó \(a+b\ge a^4+b^4\Rightarrow a+b\ge1\).
Theo (1) thì đẳng thức phải xảy ra, kết hợp với (*) ta có \(\left[{}\begin{matrix}a=0;b=1\\a=1;b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2,5\\x=1,5\end{matrix}\right.\).
Vậy...