K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2018

Điều kiện xác định: x ≠ 0; x ≠ 2.

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇒ x(x + 2) – (x – 2) = 2

⇔ x2 + 2x – x + 2 = 2

⇔ x2 + x = 0

⇔ x(x + 1) = 0

⇔ x = 0 hoặc x + 1 = 0.

   + x = 0 không thỏa mãn điều kiện xác định.

   + x + 1 = 0 ⇔ x = -1 (thỏa mãn điều kiện xác định).

Vậy phương trình có tập nghiệm S = {-1}.

4 tháng 3 2019

pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)

đk: x khác 2

Đặt \(\frac{x^2}{x-2}=t\)

Ta có phương trình:

\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)

<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)

Với t=2 ta có:

\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí

Với t=-2:

\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)

Vậy...

7 tháng 8 2020

Bài làm:

PT:

đkxđ: \(x\ne0;x\ne2\)

Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)

\(\Rightarrow x^2+2x=2+x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)

BPT:

Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)

\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)

\(\Leftrightarrow\frac{-x}{2}\le0\)

\(\Rightarrow-x\le0\)

\(\Rightarrow x\ge0\)

7 tháng 8 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)

\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)

\(\Leftrightarrow-x^2-x=0\)

\(\Leftrightarrow-x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)

Vậy \(S=\left\{-1\right\}\)

b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow x+1-2x-1\le0\)

\(\Leftrightarrow-x\le0\)

\(\Leftrightarrow x\ge0\)

Vậy \(x\ge0\)

13 tháng 2 2020

\(\frac{x^2-x}{x^2-x+1}-\frac{x^2-x+2}{x^2-x-2}=1\)

\(\Leftrightarrow\frac{\left(x^2-x\right)\left(x^2-x-2\right)}{\left(x^2-x+1\right)\left(x^2-x-2\right)}-\frac{\left(x^2-x+2\right)\left(x^2-x+1\right)}{\left(x^2-x-2\right)\left(x^2-x+1\right)}=1\)

\(\Leftrightarrow\frac{x^4-x^3-2x^2-x^3+x^2+2x}{\left(x^2-x+1\right)\left(x^2-x-2\right)}-\frac{x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2}{\left(x^2-x-2\right)\left(x^2-x+1\right)}=1\)

\(\Leftrightarrow\frac{x^4-x^3-2x^2-x^3+x^2+2x-x^4+x^3-x^2+x^3-x^2+x-2x^2+2x+2}{\left(x^2-x+1\right)\left(x^2-x-2\right)}=1\)

\(\Leftrightarrow\frac{-5x^2+3x+2}{x^4-2x^3+x-2}=1\)

<=> -5x2+3x+2=x4-2x3+x-2

<=> -5x2+3x-x4+2x3-x=-2-2

<=> -5x2+2x-x4+2x3=-4

<=> 2x(1+x2)+x2(-5-x2)=-4

13 tháng 2 2020

xong dư lào nx

27 tháng 6 2016

oho

12 tháng 7 2023

Mày nhìn cái chóa j

6 tháng 4 2021

( x + 2 ) ( x2 - 3x + 5 ) = ( x + 2 )

<=> x2 - 3x + 5 = 1

<=> x2 - 3x + 4 = 0

<=> x2 - 3x + 9/4 + 7/4 = 0

<=> ( x - 3/2 )2 = - 7/4 ( mâu thuẫn )

=> Pt vô nghiệm

\(\frac{x}{x-3}>1\)<=> \(\frac{x}{x-3}-1>0\)

<=>\(\frac{x-\left(x-3\right)}{x-3}>0\)<=>\(\frac{3}{x-3}>0\)

<=> x - 3 > 0 <=> x > 3

6 tháng 4 2021

a) 

\(x=-2,\frac{3+i\sqrt{7}}{2},\frac{3-i\sqrt{7}}{2}\)

b) \(x>3\)

Ký hiệu khoảng:

\(\left(3,\infty\right)\)

16 tháng 3 2020

Ta gọi : a là \(x^2-x\)

                 Thay vào phương trình ta có : \(\frac{a}{a+1}\)+   \(\frac{a+2}{a-2}\)= 1

                                                    \(\Rightarrow\frac{a^2-2a+a^2+3a+2}{\left(a+1\right)\left(a-2\right)}\)= 1

                                                    \(\Rightarrow2a^2+a+2=a^2-a-2\)

                                                     \(\Rightarrow a^2+2a+4=0\)XÉT TAM THỨC BẬC HAI \(\Delta=2^2-4.4=-12< 0\)

                                                      Vậy phương trình vô nghiệm

3 tháng 3 2020

a) ĐKXĐ : \(x\ne\pm a\).

Với \(a=-3\) khi đó ta có pt :

\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)

\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)

\(\Leftrightarrow2x^2+6x+24=0\)

\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )

Phần b) tương tự.

3 tháng 3 2020

\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)

\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)

\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)

\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)

\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)

\(\Leftrightarrow2ax=3a^2+a\)

\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)

a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)

b) a=1

\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)

4 tháng 3 2020

a) \(ĐKXĐ:x\ne\pm3\)

Với a = -3

\(\Leftrightarrow A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}=\frac{24}{9-x^2}\)

\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}+\frac{24}{x^2-9}=0\)

\(\Leftrightarrow\frac{-\left(x-3\right)^2-\left(x+3\right)^2+24}{x^2-9}=0\)

\(\Leftrightarrow-x^2+6x-9-x^2-6x-9+24=0\)

\(\Leftrightarrow-2x^2+6=0\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow x=\pm\sqrt{3}\)(tm)

Vậy với \(a=-3\Leftrightarrow x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

b) \(ĐKXĐ:x\ne\pm1\)

Với a = 1

\(\Leftrightarrow A=\frac{x+1}{1-x}-\frac{x-1}{1+x}=\frac{3+1}{1-x^2}\)

\(\Leftrightarrow\frac{x+1}{1-x}-\frac{x-1}{1+x}+\frac{4}{x^2-1}=0\)

\(\Leftrightarrow\frac{-\left(x+1\right)^2-\left(x-1\right)^2+4}{x^2-1}=0\)

\(\Leftrightarrow-x^2-2x-1-x^2+2x-1+4=0\)

\(\Leftrightarrow-2x^2+2=0\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\pm1\)(ktm)

Vậy với \(a=1\Leftrightarrow x\in\varnothing\)

c) \(ĐKXĐ:a\ne\pm\frac{1}{2}\)

Thay \(x=\frac{1}{2}\)vào phương trình, ta đươc :

\(A=\frac{\frac{1}{2}+a}{a-\frac{1}{2}}-\frac{\frac{1}{2}-a}{a+\frac{1}{2}}=\frac{a\left(3a+1\right)}{a^2-\frac{1}{4}}\)

\(\Leftrightarrow\frac{a+\frac{1}{2}}{a-\frac{1}{2}}+\frac{a-\frac{1}{2}}{a+\frac{1}{2}}-\frac{3a^2+a}{a^2-\frac{1}{4}}=0\)

\(\Leftrightarrow\frac{\left(a+\frac{1}{2}\right)^2+\left(a-\frac{1}{2}\right)^2-3a^2-a}{a^2-\frac{1}{4}}=0\)

\(\Leftrightarrow a^2+a+\frac{1}{4}+a^2-a+\frac{1}{4}-3a^2-a=0\)

\(\Leftrightarrow-a^2-a+\frac{1}{2}=0\)

\(\Leftrightarrow a^2+a-\frac{1}{2}=0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2-\frac{3}{4}=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}\\a=-\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{-\sqrt{3}-1}{2}\end{cases}}\)(TM)

 Vậy với \(x=\frac{1}{2}\Leftrightarrow a\in\left\{\frac{\sqrt{3}-1}{2};\frac{-\sqrt{3}-1}{2}\right\}\)