\(\sqrt{x-4}\) = 2\(\sqrt{x-3}\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:
ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow x-2+\sqrt{x-4}-2\sqrt{x-3}=0$

$\Leftrightarrow [(x-3)-2\sqrt{x-3}+1]+\sqrt{x-4}=0$

$\Leftrightarrow (\sqrt{x-3}-1)^2+\sqrt{x-4}=0$

Vì $(\sqrt{x-3}-1)^2\geq 0; \sqrt{x-4}\geq 0$ với mọi $x\geq 4$

Do đó để tổng của chúng bằng $0$ thì $\sqrt{x-3}-1=\sqrt{x-4}=0$

$\Leftrightarrow x=4$

Thử lại thấy tm

Vậy............

24 tháng 9 2016

1, x=5 bình phương các vế lên rồi giải 

26 tháng 9 2016

\(2x+\left|x-\frac{1}{2}\right|=2\)

26 tháng 9 2016

Điều kiện x \(\ge\frac{1}{4}\)

Đặt a = \(\sqrt{x-\frac{1}{4}}\)(a \(\ge0\))

=> x = a2 + \(\frac{1}{4}\)

=> PT <=> 2a2 + \(\frac{1}{2}\)\(\sqrt{a^2+\frac{1}{4}+a}\)= 2

<=> \(\sqrt{a^2+\frac{1}{4}+a}\)\(\frac{3}{2}-2a\)

<=> a2 + 0,25 + a = 4a4 + 2,25 - 6a2

<=> 4a4 - 7a2 - a + 2 = 0

<=> (a + 1)(2a - 1)(2a2 - a - 2) = 0

<=> a = 0,5

<=> x = 0,5

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................

17 tháng 8 2020

a,\(\sqrt{1-x}=\sqrt[3]{27}\left(đk:x\le1\right)\Leftrightarrow\sqrt{1-x}=3\)

\(< =>\sqrt{1-x}^2=9< =>1-x=9< =>x=-8\)tm

b,\(\sqrt{x^2-10x+25}=x+1\)

\(< =>\sqrt{\left(x-5\right)^2}=x+1\)

\(< =>|x-5|=x+1\)

\(< =>\orbr{\begin{cases}-x+5=x+1\left(x< 5\right)\\x-5=x+1\left(x\ge5\right)\end{cases}}\)

\(< =>\orbr{\begin{cases}2x=4< =>x=2\left(tm\right)\\-5-1=0\left(vo-li\right)\end{cases}}\)

c, Đặt \(\sqrt{x}=t\left(t\ge0\right)\)khi đó pt tương đương

\(t^2+t-6=0< =>t^2-2t+3t-6=0\)

<\(< =>t\left(t-2\right)+3\left(t-2\right)=0< =>\left(t+3\right)\left(t-2\right)=0\)

\(< =>\orbr{\begin{cases}t+3=0\\t-2=0\end{cases}}< =>\orbr{\begin{cases}t=-3\left(ktm\right)\\t=2\left(tm\right)\end{cases}}\)

khi đó ta được \(\sqrt{x}=t< =>x=4\)

17 tháng 8 2020

a) \(\sqrt{1-x}=\sqrt[3]{27}\)

\(\Leftrightarrow\sqrt{1-x}=3\)

\(\Leftrightarrow1-x=9\)

\(\Rightarrow x=-8\)

b) \(\sqrt{x^2-10x+25}=x+1\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x+1\)

\(\Leftrightarrow\left|x-5\right|=x+1\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=x+1\\x-5=-x-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}0=6\left(vl\right)\\2x=4\end{cases}}\Rightarrow x=2\)

c) \(x+\sqrt{x}-6=0\)

\(\Leftrightarrow\left(x+3\sqrt{x}\right)-\left(2\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=-3\left(vl\right)\end{cases}}\Rightarrow x=4\)

18 tháng 2 2017

mấy câu đầu + giữa = bình phương+ liên hợp

câu cuối cùng pt cho thành mũ 2

30 tháng 12 2016

x=11.94685508 nha 

22 tháng 9 2019

\(\left(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\right)\)

\(=\frac{\sqrt{2}\left(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{10+2\sqrt{21}}+\sqrt{10-2\sqrt{21}}}{\sqrt{2}}\)

\(=\frac{\sqrt{3+2\sqrt{3.7}+7}+\sqrt{3-2\sqrt{3.7}+7}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}}{\sqrt{2}}\)

\(=\frac{|\sqrt{3}-\sqrt{7}|+|\sqrt{3}+\sqrt{7}|}{\sqrt{2}}\)

\(=\frac{-\sqrt{3}+\sqrt{7}+\sqrt{3}+\sqrt{7}}{\sqrt{2}}\)

\(=\frac{2\sqrt{7}}{\sqrt{2}}\)

\(=\sqrt{14}\)

22 tháng 9 2019

\(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{2}-\sqrt{3}}\)

\(=\frac{1}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{1}{(\sqrt{2}-\sqrt{3})\left(\sqrt{2}+\sqrt{3}\right)}\)

\(=\frac{2}{2-3}=\frac{2}{-1}=-2\)

25 tháng 7 2017

1) chả biết nên làm thế nào nữa, đinh chỉ xét dấu thôi là xong, nhưng đang ám ảnh bài giống giống này bị sai

2) Tìm đkxđ --> bình phương 2 vế --> bấm máy tính giải pt bậc 2 --> kl

3) giống câu 2

4) + ĐK: \(x^2-8x+16\ge0\)

pt đã cho \(\Leftrightarrow\left[{}\begin{matrix}\left|x-4\right|+\left|x+2\right|=0\\\left|4-x\right|+\left|x+2\right|=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\end{matrix}\right.\) (vô lý)

Kl: ptvn