Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x^2+7}=a\left(a>0\right)\)
Khi đó phương trình trở thành :
\(a^2+4x=\left(x+4\right)a\Leftrightarrow a^2-ax+4x-4a=0\)
\(\Leftrightarrow\left(a^2-ax\right)+\left(4x-4a\right)=0\Leftrightarrow a\left(a-x\right)+4\left(x-a\right)=0\)
\(\Leftrightarrow\left(a-x\right)\left(a-4\right)=0\Leftrightarrow\orbr{\begin{cases}a-x=0\\a-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=x\\a=4\end{cases}}}\)
+) \(a=x\Rightarrow\sqrt{x^2+7}=x\)( điều kiện bổ sung \(x\ge0\))
\(\Leftrightarrow x^2+7=x^2\Leftrightarrow7=0\)( vô lý ) => loại
+) \(a=4\)( thỏa mãn điều kiện a > 0 ) \(\Rightarrow\sqrt{x^2+7}=4\Leftrightarrow x^2+7=16\)
\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 3 ; -3 }
Tích cho mk nhoa !!!! ~~
P/S: Không cần đặt ẩn phụ cho phí t/g!
\(ĐK:x\inℝ\)
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
\(\Leftrightarrow x\sqrt{x^2+7}+4\sqrt{x^2+7}=x^2+4x+7\)
\(\Leftrightarrow\left(x^2+7-x\sqrt{x^2+7}\right)-\left(4\sqrt{x^2+7}-4x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+7}-x\right)\left(\sqrt{x^2+7}-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+7}=x\left(1\right)\\\sqrt{x^2+7}=4\left(2\right)\end{cases}}\)
Giải (1) ta thấy vô nghiệm
\(\left(2\right)\Leftrightarrow x^2+7=16\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
Vậy phương trình có tập nghiệm S = {3;-3}
a,\(x+4\sqrt{7-x}\) \(-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}-1=0\) (dk \(1\le x\le7\) )
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2+4\sqrt{7-x}-4\sqrt{x-1}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)\left(\sqrt{x-1}-4\right)+\left(\sqrt{7-x}\right)\left(4-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-4\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=4\\\sqrt{x-1}=\sqrt{7-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\left(l\right)\\x=4\left(tm\right)\end{cases}}}\)
Ui...... người ta nói nó dễ ..................................
\(2\sqrt{x+4}-4\sqrt{2x-6}=x-7\)
\(\Leftrightarrow\sqrt{2^2\left(x+4\right)}-\sqrt{4^2\left(2x-6\right)}=x-7\)
\(\Leftrightarrow\sqrt{4x+16}-\sqrt{32x-96}=x-7\)
\(\Leftrightarrow\left(\sqrt{4x+16}-\sqrt{32x-96}\right)^2=\left(x-7\right)^2\)
\(\Leftrightarrow\sqrt{4x+16}^2-2.\sqrt{4x+16}.\sqrt{32x-96}+\sqrt{32x-96}^2=x^2-14x+49\)
\(\Leftrightarrow\left(4x+16\right)-2.\sqrt{\left(4x+16\right)\left(32x-96\right)}+\left(32x-96\right)=x^2-14x+49\)
\(\Leftrightarrow\left(4x+16\right)-2.\sqrt{128x^2-384x+512x-1536}+\left(32x-96\right)=x^2-14x+49\)
\(\Leftrightarrow\left(-2\sqrt{128x^2-384x+512x-1536}\right)=\left[x^2-14x+49-\left(4x+16\right)-\left(32x-96\right)\right]\)
\(\Leftrightarrow\left(-2\sqrt{128x^2+128x-1536}\right)^2=\left(x^2-50x+129\right)^2\)
\(\Leftrightarrow4.\left(128x^2+128x-1536\right)=\left(x^2-50x\right)^2+2.\left(x^2-50x\right).129+129^2\)
\(\Leftrightarrow512x^2+512x-6144=\left(x^2-50x\right)^2+258.\left(x^2-50x\right)+16641\)
\(\Leftrightarrow512x^2+512x-6144=x^4-100x^3+2500x^2+258x^2-12900x+16641\)
\(\Leftrightarrow-x^4+100x^3-2246x^2+13412x-22785=0\)
\(\Leftrightarrow x_1\approx70,94\) ; \(x_2\approx3,0588\) ; \(x_3=21\) ; \(x_4=5\)
Bài này có 1 nghiệm duy nhất thôi nha : x = 5
tại máy tính của mình ra sai kết quả
x2 + 7 > 0 với mọi x => căn thức \(\sqrt{x^2+7}\) luôn xác định
PT <=> (x2 + 7) + 4x = x. \(\sqrt{x^2+7}\) + 4. \(\sqrt{x^2+7}\)
<=> [(x2 + 7) - x. \(\sqrt{x^2+7}\)] + [4x - 4. \(\sqrt{x^2+7}\)] = 0
<=> \(\sqrt{x^2+7}\). [\(\sqrt{x^2+7}\) - x] + 4. [ x - \(\sqrt{x^2+7}\)] = 0
<=> [ x - \(\sqrt{x^2+7}\)] . [4 - \(\sqrt{x^2+7}\)] = 0
<=> x - \(\sqrt{x^2+7}\) = 0 hoặc 4 - \(\sqrt{x^2+7}\) = 0
+) 4 - \(\sqrt{x^2+7}\) = 0 <=> x2 + 7 = 16 <=> x2 = 9 <=> x = 3 hoặc x = -3
+) x - \(\sqrt{x^2+7}\) = 0 : Vô nghiệm vì \(\sqrt{x^2+7}\) > \(\sqrt{x^2}\) = |x| >= x => x - \(\sqrt{x^2+7}\) < 0 với mọi x
Vậy PT có 2 nghiệm x =3 hoặc x = -3
x^2+4x+7 =(x+4).√(x^2+7)
<=> (x^2 + 4x + 7)/(x + 4) = √(x^2 + 7) (1)
Điều kiện: x + 4 # 0<=> x # - 4
(1)<=> (x^2 + 4x + 7)^2/(x + 4)^2 = x^2 + 7
<=> (x^4 + 16x^2 + 49 + 8x^3 + 56x + 14x^2)/(x^2 + 8x + 16) = x^2 + 7
=> x^4 + 16x^2 + 49 + 8x^3 + 56x + 14x^2 = (x^2 + 7)(x^2 + 8x + 16)
<=>x^4 + 16x^2 + 49 + 8x^3 + 56x + 14x^2 = x^4 + 8x^3 + 16x^2 + 7x^2 + 56x + 112
<=> 7x^2 = 63
<=> x^2 = 9
<=> x = 3 (thoả mãn)
hoặc x = -3 (thỏa mãn)
Vậy Pt có nghiệm x = 3 hoặc x = -3
Đặt : P=\(\sqrt{x^2+7}\Rightarrow x^2+7=P^2\)
Pt trở thành :
P2 + 4x =(x+4)P
\(\Leftrightarrow\) P2 +4x - Px - 4P =0
\(\Leftrightarrow\) P(P-x) -4(P-x) =0
\(\Leftrightarrow\) (P-x)(P-4)=0
Sau đó cho từng cái bằng 0 rồi thế P vào để tìm x
S= { -3; 3 }
đề <=> \(\left(x^2+2x\right)\left(x^2+2x-8\right)\)\(=-7\) (1)
đặt x2+2x-4=a
từ (1) => (a-4)(a+4)= -7
<=> a2-16=-7
<=> a2-9=0
<=>(a-3)(a+3)=0
=> a=3 hoặc a=-3
thay số vào làm nốt nhé
a/ \(\hept{\begin{cases}VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\\VP=4-2x-x^2=5-\left(x+1\right)^2\le5\end{cases}}\)
Dấu = xảy ra khi \(x=-1\)
b/ \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\)thì ta có
\(\hept{\begin{cases}a^2+b^2=2\\a+b=-a^2b^2+3\end{cases}}\)
Đặt \(\hept{\begin{cases}a+b=S\\ab=P\end{cases}}\) thì ta có
\(\hept{\begin{cases}S^2-2P=2\\S=3-P^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(3-P^2\right)^2-2P=2\\S=3-P^2\end{cases}}\)
Thôi làm tiếp đi làm biếng quá.
a)√3x2+6x+7+√5x2+10x+14=4−2x−x2
\(\Leftrightarrow16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21\)
\(\Leftrightarrow-x^2-2x+4\)
Thế vào ta được:
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}=-17\)
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+17=0\)
\(16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21=4-x\left(x+2\right)\)
x 2 − 4 x + 4 = 7 / 2 ⇔ ( x − 2 ) 2 = 7 / 2
⇔ x - 2 = ±√(7/2) ⇔ x = 2 ± √(7/2)
Vậy phương trình có hai nghiệm
x 1 = 2 + √ ( 7 / 2 ) ; x 2 = 2 - √ ( 7 / 2 )