\(45x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

Nhóm số hạng 1 vs số hạng 3 và số hạng 2 với số hạng 4

Chia từng thừa số VT với x và chia vế phải cho x^2

Đặt a= \(x+\frac{6}{x} \) rồi GPT thu đc để tìm x

7 tháng 2 2018

ghép cái đầu vs cái thứ 3, cái thứ 2 vs cái thứ 4 . sau đó chia x^2 sang là đc

24 tháng 7 2016

(x+1)(x-2)(x+6)(x-3)=45x2

<=>(x+1)(x+6)(x-2)(x-3)=45x2

<=>(x2+7x+6)(x2-5x+6)=45x2

Đặt t=x2+7x+6 ta được:

t.(t-12x)=45x2

<=>t2-12xt=45x2

<=>45x2+12xt-t2=0

<=>45x2-3xt+15xt-t2=0

<=>3x.(15x-t)+t.(15x-t)=0

<=>(3x+t)(15x-t)=0

<=>3x=-t hoặc 15x=t

Với 3x=-t =>3x=-x2-7x-6

=>x2+10x+6=0

=>\(x_1=-5+\sqrt{19};x_2=-5-\sqrt{19}\) (loại cả 2 nghiệm) (bài này dài vs lại lớp 9 nên làm tắt chắc cũng dc)

Với 15x=t

=>15x=x2+7x+6

=>x2-8x+6=0

=>\(x_1=4-\sqrt{10};x_2=4+\sqrt{10}\)(loại cả 2 nghiệm)

Vậy PT ko có nghiệm nguyên nào

23 tháng 7 2016

\(\left(x+1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)=45x^2\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left(x-2\right)\left(x-3\right)=45x^2\)

\(\Leftrightarrow\left(x^2+7x+6\right)\left(x^2-5x+6\right)=45x^2\)

\(\Leftrightarrow\left(x^2+x+6+6x\right)\left(x^2+x+6-6x\right)=45x^2\)

\(\Leftrightarrow\left(x^2+x+6\right)^2-36x^2=45x^2\)

\(\Leftrightarrow\left(x^2+x+6\right)^2-81x^2=0\)

\(\Leftrightarrow\left(x^2+10x+6\right)\left(x^2-8x+6\right)=0\)

Giải được các nghiệm là \(\sqrt{19}-5\);\(-\sqrt{19}-5\);\(4+\sqrt{10}\)và \(4-\sqrt{10}\)

\(\Rightarrow\)Phương trình không có nghiệm nguyên.

\(\left(x+1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)=45x^2\)

\(\Rightarrow\left(x^2+6x+x+6\right)\left(x^2-3x-2x+6\right)=45x^2\)

\(\Rightarrow\left(x^2+7x+6\right)\left(x^2-5x+6\right)=45x^2\)

Đề sai rồi bạn ơi

7 tháng 2 2018

\(pt\Leftrightarrow\left(x^2-8x+6\right)\left(x^2+10x+6\right)=0\)

8 tháng 2 2018

\(\left(x+1\right)\left(x-2\right)\left(x+6\right)\left(x-3\right)=45x^2\)

\(\Leftrightarrow\left(x^2+7x+6\right)\left(x^2-5x+6\right)=45x^2\)

Ta thấy : x = 0 không phải là 1 nghiệm của phương trinh chia cả 2 về cho x2 ta được :

\(\left(x+\dfrac{6}{x}+7\right)\left(x+\dfrac{6}{x}-5\right)=45\)

Đặt \(t=x+\dfrac{6}{x}+1\), ta được :

\(\left(t+6\right)\left(t-6\right)=45\)

\(\Leftrightarrow t^2=81\)

\(\Leftrightarrow\left[{}\begin{matrix}t=9\\t=-9\end{matrix}\right.\)

Thay từng t vào r tính.

15 tháng 7 2017

Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.

b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)

Dấu = xảy ra khi \(x=2\)

c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)

\(\le1+\sqrt{3}\)

Dấu = không xảy ra nên pt vô nghiệm

Câu d làm tương tự

15 tháng 7 2017

\(a,\sqrt{x^2-4}-x^2+4=0\) 

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\) 

\(\Leftrightarrow x^2-4=\left(x-4\right)^2\) 

\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)  

\(\Leftrightarrow-x^4-7x^2-20=0\) 

\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\) 

\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\) 

\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\) 

\(\Rightarrow\)pt vô nghiệm

a,

<=>(x+3)(x4-3x3-6x2+18x-9)=0

sau đó vô (Trích: Dự án phần mềm giải phương trình bậc 4 của Bùi Thế Việt ...

b,GPT: $x^5+10x^3+20x-18=0 - Diễn đàn Toán học

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

6 tháng 9 2016

a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)

Đặt \(x-3=t\) pt thành

\(\sqrt{t\left(t-6\right)}-t=0\)

\(\Leftrightarrow t^2-6t=t^2\)

\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)

 

6 tháng 9 2016

b)\(\sqrt{x^2-4}-x^2+4=0\)

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

Đặt \(\sqrt{x^2-4}=t\) pt thành

\(t=t^2\Rightarrow t\left(1-t\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).

Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\) 

Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)