K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

a) | 2x - 3 | = x - 5

Bình phương hai vế phương trình đã cho ta được phương trình hệ quả . Ta có :

| 2x - 3 | = x - 5 \(\Rightarrow\) ( 2x - 3 )2 = ( x - 5 )2

\(\Leftrightarrow\) 4x2 - 12x + 9 = x2 - 10x + 25 

\(\Leftrightarrow\) 3x2 - 2x - 16 = 0

Phương trình cuối có hai nghiệm x1 = -2 ; x2 = 8/3

Vậy phương trình trên là vô nghiệm

18 tháng 4 2017

Giải:

Để phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\)

\(\Leftrightarrow\left(2m-1\right)^2-4.2\left(m-1\right)>0\)

Từ đó suy ra \(m\ne1,5\left(1\right)\)

Mặt khác, theo định lý Viet và giả thiết ta có:

\(\hept{\begin{cases}x_1+x_2=-\frac{2m-1}{2}\\x_1.x_2=\frac{m-1}{2}\\3x_1-4x_2=11\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_1=\frac{7m-7}{26-8m}\\3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\end{cases}}\)

Giải phương trình \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\) 

Ta được \(m=-2\) và \(m=4,125\left(2\right)\)

Đối chiếu điều kiện  \(\left(1\right)\)  và \(\left(2\right)\) ta có: Với \(m=-2\) hoặc \(m=4,125\) thì phương trình đã có 2 nghiệm phân biệt

3 tháng 1 2021

ĐK: \(-\dfrac{1}{4}\le x\le3\)

\(pt\Leftrightarrow4x+1-6\sqrt{4x+1}+9+3-x-2\sqrt{3-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

14 tháng 11 2022

GIẢI THIK ĐC HOK Ạ

 

2 tháng 4 2018

Câu 1 nè:Phương trình trình trên có 2 nghiệm phân biệt khi ∆>0 tức là (2m-1)²-8(m-1) =(2m-3)² >0 <=>m khác 2/3 
Từ đó ta tính đc 
x1=-1/2 
x2=1-m hoặc x1=1-m,x2=-1/2 
bạn thay vào 
3x1-4x2=11 là tìm ra m,chú ý xét cả 2 trường hợp,nếu tìm ra m=3/2 thì loại. 

24 tháng 9 2019

giúp với mọi người

NV
14 tháng 11 2019

\(\Leftrightarrow3\left(x+1\right)\left(\sqrt{x^2+x+3}-\left(x+1\right)\right)+2x-4=0\)

\(\Leftrightarrow\frac{-\left(3x+1\right)\left(x-2\right)}{\sqrt{x^2+x+3}+x+1}+2\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\frac{3\left(x+1\right)}{\sqrt{x^2+x+3}+x+1}=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow3x+3=2\sqrt{x^2+x+3}+2x+2\)

\(\Leftrightarrow2\sqrt{x^2+x+3}=x+1\) (\(x\ge-1\))

\(\Leftrightarrow4\left(x^2+x+3\right)=x^2+2x+1\)

\(\Leftrightarrow3x^2+2x+11=0\left(vn\right)\)

Vậy pt đã cho có nghiệm duy nhất \(x=2\)

NV
11 tháng 12 2018

Ta có

\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)

\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)

Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)

\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)