K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

Lời giải:

\(\frac{x-a}{b+c}+\frac{x-b}{c+a}+\frac{x-c}{a+b}=\frac{3x}{a+b+c}\)

$\Leftrightarrow \frac{x-a}{b+c}-1+\frac{x-b}{c+a}-1+\frac{x-c}{a+b}-1=\frac{3x}{a+b+c}-3$
$\Leftrightarrow \frac{x-(a+b+c)}{b+c}+\frac{x-(a+b+c)}{c+a}+\frac{x-(a+b+c)}{a+b}=\frac{3[x-(a+b+c)]}{a+b+c}$

$\Leftrightarrow (x-a-b-c)(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}-\frac{3}{a+b+c})=0$

Nếu $\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{c+a}-\frac{3}{a+b+c}=0$ thì PT có nghiệm $x\in\mathbb{R}$ bất kỳ.

Nếu $x-a-b-c=0$

$\Rightarrow x=a+b+c$

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

28 tháng 2 2018

\(PT\Leftrightarrow\dfrac{x-a}{b+c}-1+\dfrac{x-b}{c+a}-1+\dfrac{x-c}{a+b}-1=\dfrac{3x}{a+b+c}-3\)

\(\Leftrightarrow\dfrac{x-a-b-c}{b+c}+\dfrac{c-a-b-c}{c+a}+\dfrac{x-a-b-c}{a+b}=\dfrac{3\left(x-a-b-c\right)}{a+b+c}\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}\right)=0\)

Nếu \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}=0\) thì PT có nghiệm với mọi \(x\in R\)

Nếu \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}-\dfrac{3}{a+b+c}\ne0\) thì PT có nghiệm là \(x=a+b+c\)

20 tháng 2 2019

a) ĐKXĐ: a + b + c, a + b, b + c, c + a \(\ne\) 0.

Áp d

20 tháng 2 2019

Xl ấn nhầm nha

14 tháng 1 2016

bạn có thể cho mình cách gải được k

14 tháng 1 2016

cách giải là đi hỏi thầy,cô

Câu 3: 

\(\Leftrightarrow3x^3-2x^2+6x^2-4x+9x-6>0\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2+2x+3\right)>0\)

=>3x-2>0

=>x>2/3

Câu 1: 

a: \(A=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{x+1+2x-2}{\left(x^2-1\right)}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{3x-1}{x^2-1}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{3x^2-x-3x^2+3}{x\left(x^2-1\right)}\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{-\left(x-3\right)}{x\left(x+2\right)}\)

\(=x-2+\dfrac{6x-3-x^2+3x}{x\left(x+2\right)}\)

\(=x-2+\dfrac{-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x\left(x^2-4\right)-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x^3-4x-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x^3-x^2+5x-3}{x\left(x+2\right)}\)

b: TH1: \(\left\{{}\begin{matrix}x^3-x^2+5x-3>0\\x\left(x+2\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< x< 2\\x>0.63\end{matrix}\right.\Leftrightarrow0.63< x< 2\)

TH2: \(\left\{{}\begin{matrix}x^3-x^2+5x-3< 0\\x\left(x+2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0.63\\\left[{}\begin{matrix}x>0\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x< 0.63\\x< -2\end{matrix}\right.\)

Câu 2: 

a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)

\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)

Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)

hay \(a\in\left\{0;4;-4\right\}\)

Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)

hay \(a\notin\left\{0;4;-4\right\}\)

b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)

\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)

Để phương trình có vô số nghiệm thì m-1=0

hay m=1

Để phương trình vô nghiệm thì m+4=0

hay m=-4

Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0

hay \(m\in R\backslash\left\{1;-4\right\}\)