Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)
\(\Leftrightarrow x+1=2017\Leftrightarrow x=2016\)
Vậy \(x=2016\)
a, \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\) \(=-88\)
\(x+\dfrac{206}{100}=\dfrac{-5}{176}\)
\(x=\dfrac{-5}{176}-\dfrac{206}{100}\)
\(x=\dfrac{-9198}{4400}\)
a) \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=90-89\)
\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)
\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)
\(x+\dfrac{206}{100}=5\)
\(x=5-\dfrac{206}{100}\)
\(x=\dfrac{147}{50}\)
Vậy \(x=\dfrac{147}{50}\)
a)<=>\(\dfrac{\left(2x-3\right).2}{6}-\dfrac{3.3}{6}=\dfrac{5-2x}{6}-\dfrac{1.3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}=\dfrac{5-2x}{6}-\dfrac{3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}-\dfrac{5-2x}{6}+\dfrac{3}{6}=0\)
<=>\(\dfrac{4x-6-9-5+2x+3}{6}=\dfrac{4x-17}{6}=0\)
<=>\(4x-17=0\)
<=>\(4x=17\)<=>\(x=\dfrac{17}{4}\)
a, (x + 1) + (x + 4) + ... + (x + 28) = 155
x + 1 + x + 4 + ... + x + 28 = 155
(x + x + x + ... + x) + (1 + 4 + ... + 28) = 155
x . 10 + 145 = 155
x . 10 = 155 - 145
x . 10 = 10
x = 10 : 10
x = 1
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...........+\dfrac{1}{x\left(x+3\right)}=\dfrac{6}{19}\)
\(\Rightarrow\dfrac{1}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...........+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{6}{19}\)
\(\Rightarrow\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+............+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{6}{19}\)
\(\Rightarrow\dfrac{1}{3}\left(1-\dfrac{1}{x+3}\right)=\dfrac{6}{19}\)
\(\Rightarrow1-\dfrac{1}{x+3}=\dfrac{6}{19}:\dfrac{1}{3}\)
\(\Rightarrow1-\dfrac{1}{x+3}=\dfrac{18}{19}\)
\(\Rightarrow\dfrac{1}{x+3}=1-\dfrac{18}{19}\)
\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{19}\)
\(\Rightarrow x+3=19\)
\(\Rightarrow x=19-3\)
\(\Rightarrow x=16\)
Vậy \(x=16\) laf giá trị cần tìm
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{299}{600}\)
\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{299}{600}\)
\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{299}{600}\)
\(\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{299}{600}\)
\(\dfrac{1}{x+1}=\dfrac{300}{600}-\dfrac{299}{600}\)
\(\dfrac{1}{x+1}=\dfrac{1}{600}\)
=> x + 1 = 600
x = 600 - 1
x = 599
Vậy x = 599
a: \(\left(\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{73\cdot76}\right)\cdot x^2=2\dfrac{16}{19}\)
=>\(\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{73\cdot76}\right)\cdot x^2=2+\dfrac{16}{19}=\dfrac{54}{19}\)
=>\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{73}-\dfrac{1}{76}\right)\cdot x^2=\dfrac{54}{19}\)
=>\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{76}\right)\cdot x^2=\dfrac{54}{19}\)
=>\(\dfrac{1}{3}\cdot\dfrac{18}{76}\cdot x^2=\dfrac{54}{19}\)
=>\(\dfrac{6}{76}\cdot x^2=\dfrac{54}{19}\)
=>\(x^2=\dfrac{54}{19}:\dfrac{6}{76}=\dfrac{54}{19}\cdot\dfrac{76}{6}=9\cdot4=36\)
=>\(\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
b: \(2^x+2^{x+2}=\dfrac{200}{19}\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{19\cdot20}\right)\)
=>\(2^x+2^x\cdot4=\dfrac{200}{19}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)
=>\(5\cdot2^x=\dfrac{200}{19}\left(1-\dfrac{1}{20}\right)=\dfrac{200}{19}\cdot\dfrac{19}{20}=10\)
=>\(2^x=2\)
=>x=1