\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2\sqrt{x^2}\left(\text{*}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

Điều kiện: \(\left\{\begin{matrix}x\left(x-1\right)\ge0\\x\left(x+2\right)\ge0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x\le0\text{∨}x\ge1\\x\le-2\text{∨}x\ge0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\x\ge1\end{matrix}\right.\)

Với \(x=0\) thì \(\left(\text{*}\right)\Leftrightarrow0=0\Rightarrow x=0\)là 1 nghiệm của \(\left(\text{*}\right)\).

Với \(x\ge1\) thì \(\left(\text{*}\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x-1}+\sqrt{x+2}\right)=2\sqrt{x^2}\Leftrightarrow\sqrt{x-1}+\sqrt{x+2}=2\sqrt{x}\)

\(\Leftrightarrow x-1+x+2+2\sqrt{\left(x-1\right)\left(x+2\right)}=4x\Leftrightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=x-\frac{1}{2}\)\(\Leftrightarrow\left\{\begin{matrix}x\ge\frac{1}{2}\\x^2+x-2=x^2-x+\frac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x\ge\frac{1}{2}\\x=\frac{9}{8}\end{matrix}\right.\Leftrightarrow x=\frac{9}{8}\left(N\right)\)

Vậy phương trình có hai nghiệm là \(x=0\text{∨}x=\frac{9}{8}.\)

2 tháng 1 2017

copy hay

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)

14 tháng 8 2015

a/ \(\text{ĐK: }....\Leftrightarrow x\le-3\text{ hoặc }x\ge0\)

+TH1: \(x\ge0\)

\(pt\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow x=0\text{ hoặc }\sqrt{x+1}+\sqrt{x+2}=\sqrt{x+3}\text{ (1)}\)

\(\left(1\right)\Leftrightarrow x+1+x+2+2\sqrt{\left(x+1\right)\left(x+2\right)}=x+3\)

\(\Leftrightarrow x+2\sqrt{\left(x+1\right)\left(x+2\right)}=0\text{ (vô nghiệm do }x\ge0\text{ nên }x+\sqrt{\left(x+1\right)\left(x+2\right)}>0\text{)}\)

\(+TH2:\text{ }x\le-3\)

\(pt\Leftrightarrow\sqrt{-x}\left(\sqrt{-x-1}+\sqrt{-x-2}-\sqrt{-x-3}\right)=0\)

\(\Leftrightarrow\sqrt{-x-1}+\sqrt{-x-2}=\sqrt{-x-3}\text{ }\left(do\text{ }x\le-3\Rightarrow\sqrt{-x}>\sqrt{3}\right)\)

\(\Leftrightarrow-x-1-x-2+2\sqrt{\left(-x-1\right)\left(-x-2\right)}=-x-3\)

\(\Leftrightarrow2\sqrt{\left(-x-1\right)\left(-x-2\right)}-x=0\text{ (vô nghiệm do }-x\ge3\text{)}\)

Vậy \(x=0\)

b/

\(\text{ĐK: }x\ge1\)

\(\text{Đặt }\sqrt{x-1}=t;\text{ }t\ge0\)

\(pt\text{ thành: }\left(t+1\right)^3+2t+t^2-1=0\)

\(\Leftrightarrow t^3+4t^2+5t=0\Leftrightarrow t\left(t^2+4t+5\right)=0\)

\(\Leftrightarrow t=0\vee t^2+4t+5=0\text{ (Vô nghiệm)}\)

\(pt\text{ đã cho }\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x=1\)

 

20 tháng 10 2017

Điều kiện tự làm nha.

\(\sqrt{x\left(x+1\right)}+\sqrt{x\left(x+2\right)}=\sqrt{x\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\left(1\right)\\\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}=0\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow\sqrt{x+1}+\sqrt{x+2}=\sqrt{x+3}\)

\(\Leftrightarrow2x+3+2\sqrt{\left(x+1\right)\left(x+2\right)}=x+3\)

\(\Leftrightarrow2\sqrt{\left(x+1\right)\left(x+2\right)}=-x\)

Tới đây thì bình phương 2 vế rồi giải phương trình bậc 2 nhé

31 tháng 8 2018

Sorry nha nhưng em mới học lớp 7 thôi à ~~