\(\sqrt{x+2}+\sqrt{6-x}=x^2-6x+13\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

Có \(\left(\sqrt{x+2}+\sqrt{6-x}\right)^2\le2\left(x+2+6-x\right)=16\)=16

<=>\(\sqrt{x+2}+\sqrt{6-x}\le4\)(1)

Mà x^2-6x+13=(x-3)^2+4>_4(2)

Từ (1)(2)=>Dấu "=" xảy ra <=> \(\sqrt{x+2}=\sqrt{6-x}\)

                                                    (x-3)^2=0

                                           <=>x=2 và x=3 (vô lý)

                                             =>x\(\in\varnothing\)

                                                                   

24 tháng 4 2021

HACK NAO VAI . ai biet gui di

18 tháng 5 2021

x=\(\frac{1}{392}\)(729-28\(\sqrt{2}\)+\(\sqrt{1457-56\sqrt{2}}\)

19 tháng 8 2016

a) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)

Đặt \(t=\sqrt{x-1}\left(ĐK:t\ge0\right)\Leftrightarrow x-1=t^2\Leftrightarrow x=t^2+1\)

pt \(\Leftrightarrow\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}=2\Leftrightarrow\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}=2\Leftrightarrow t+1+t-1=2\Leftrightarrow t=1\left(tm\right)\)

Với t=1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\) 

Câu b tương tự

19 tháng 7 2016

\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\) (ĐKXĐ : \(-1\le x\le7\))

Áp dụng bất đẳng thức Bunhiacopxki vào vế trái của phương trình : \(\left(1.\sqrt{7-x}+1.\sqrt{x+1}\right)^2\le\left(1^2+1^2\right)\left(7-x+x+1\right)\)

\(\Rightarrow\left(\sqrt{7-x}+\sqrt{x+1}\right)^2\le16\Rightarrow\sqrt{7-x}+\sqrt{x+1}\le4\) (1)

Xét vế phải của phương trình : \(x^2-6x+13=\left(x^2-6x+9\right)+4=\left(x-3\right)^2+4\ge4\) (2)

Từ (1) và (2) ta suy ra phương trình ban đầu tương đương với : \(\begin{cases}\sqrt{7-x}+\sqrt{x+1}=4\\x^2-6x+13=4\end{cases}\) \(\Leftrightarrow x=3\) (TMĐK)

Vậy phương trình có nghiệm x = 3

6 tháng 7 2018

bài 1 :điều kiện\(4\le x\le6\) 

 ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)

\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)

bài 2 :điều kiện : \(2\le x\le4\)

ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)

\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)

20 tháng 10 2020

a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\)  (đk: \(x\ge0\))

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)

\(\Leftrightarrow2\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)

\(\Leftrightarrow x=9\)(tmđk)

vậy nghiệm của phtrinh là x = 9

20 tháng 10 2020

b) \(\sqrt{x^2-6x+9}=6\)     (đk: \(x^2-6x+9\ge0\))

bình phương 2 vế, ta được: \(x^2-6x+9=36\)

\(\Leftrightarrow x^2-6x-27=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+3\right)=0\)

\(\Leftrightarrow x=9\)hoặc \(x=-3\)

8 tháng 7 2019

\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{6+x-x^2}.\)

\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{-x^2+x+6}\)

\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{-x^2-3x+2x+6}\)\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{-\left(x^2+3x-2x-6\right)}\)

\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{-\left[x\left(x+3\right)-2\left(x+3\right)\right]}\)

\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{-\left(x+3\right)\left(x-2\right)}\)

\(6x+\sqrt{x+2}+2\sqrt{3-x}=8\sqrt{\left(3-x\right)\left(x-2\right)}\)

Từ đây giải tiếp ạ.

NV
3 tháng 10 2020

ĐKXĐ: ...

a.

\(VT=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{2\left(6-x+x+2\right)}=4\)

\(VP=\left(x-3\right)^2+4\ge4\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}6-x=x+2\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

Vậy pt vô nghiệm

b.

\(\Leftrightarrow\frac{x^3}{\sqrt{9-x^2}}=9-x^2\)

\(\Leftrightarrow x^3=\left(9-x^2\right)\sqrt{9-x^2}\)

\(\Leftrightarrow x^3=\left(\sqrt{9-x^2}\right)^3\)

\(\Leftrightarrow x=\sqrt{9-x^2}\) (\(x\ge0\))

\(\Leftrightarrow x^2=9-x^2\)

\(\Rightarrow x=\frac{3\sqrt{2}}{2}\)

25 tháng 7 2017

ĐKXĐ các bài bạn tự tìm nhé!

a)\(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)

<=>\(\sqrt{8x+1}-\sqrt{2x-2}=\sqrt{7x+4}-\sqrt{3x-5}\)

Bình phương 2 vế

=>\(10x-1-2\sqrt{\left(8x+1\right)\left(2x-2\right)}=10x-1-2\sqrt{\left(7x+4\right)\left(3x-5\right)}\)

<=>\(\sqrt{\left(8x+1\right)\left(2x-2\right)}=\sqrt{\left(7x+4\right)\left(3x-5\right)}\)

=>16x2-14x-2=21x2-23x-20

<=>5x2-9x-18=0

<=>x=3 hoặc x=\(-\dfrac{6}{5}\)

Sau đó thử lại nghiệm xem có thõa mãn không (dù tìm ĐKXĐ rồi vẫn phải thử nhé)

b)

\(\sqrt{x+3-4\sqrt{x-1}+\sqrt{x+8-6\sqrt{x-1}}}=1\)

<=>\(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

<=>\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

*)x\(\ge10\)

<=>\(\sqrt{x-1}-2+\sqrt{x-1}-3=1\)

<=>\(2\sqrt{x-1}=6\)

<=>x=10(TM)

*)5\(\le x< 10\)

<=>\(\sqrt{x-1}-2+3-\sqrt{x-1}=1\left(LĐ\right)\)

*)1\(\le x< 5\)

<=>\(2-\sqrt{x-1}+3-\sqrt{x-1}=1\)

<=>\(2\sqrt{x-1}=4\)

<=>x=5(L)

Vậy 5\(\le x\le10\)

c)\(\sqrt{6-x}+\sqrt{x+2}=x^2-6x+13\)

Vế phải:x2-6x+9+4=(x-3)2+4\(\ge4\)(1)

Vế trái: Áp dụng BĐT Bunhia

Ta có:\(\left(\sqrt{6-x}+\sqrt{x+2}\right)^2\le\left(1+1\right)\left(6-x+x+2\right)=16\)

=>Vế trái \(\le4\)(2)

Từ 1 và 2=>Phương trình tương đương:\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\6-x=x+2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)(L)

Vậy PTVN

d)\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)

<=>\(\sqrt{x^2-x}=-\sqrt{x^2+x-2}\)

Bình phương 2 vế

=>x2-x=x2+x-2

<=>2x=2

<=>x=1

Thử lại thõa mãn Vậy x=1

25 tháng 7 2017

1) + ĐK : tự xử

+ pt đã cho \(\Leftrightarrow\sqrt{8x+1}-\sqrt{2x-2}=\sqrt{7x+4}-\sqrt{3x-5}\)

\(\Rightarrow8x+1-2x+2-2\sqrt{16x^2-14x-2}=7x+4-3x+5-2\sqrt{21x^2-23x-20}\)

\(\Rightarrow10x-1-2\sqrt{16x^2-14x-2}=10x-1-\sqrt{21x^2-23x-20}\)

\(\Rightarrow16x^2-14x-2=21x^2-23x-20\Rightarrow5x^2-9x-18=0\Rightarrow\left[{}\begin{matrix}x=3\left(N\right)\\x=-\dfrac{6}{5}\left(L\right)\end{matrix}\right.\)

kl: x=5

P/s: + x=5 có nhận hay không phụ thuộc vào đk ở đầu bài, bạn tự giải rồi xét

+ bài này dùng dấu => , không dùng <=>, dùng <=> được nửa số điểm, nếu là gv khó tính sẽ gạch toàn bộ bài

28 tháng 6 2017

đề sai à, sửa lại rồi áp dụng C-S: cho VT=<4, biến đổi VP>=4 xảy ra khi VT=VP=4