Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{\left(x-1\right)^2}+\sqrt{x^2+4x+4}=3\)
\(pt\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)
\(\Leftrightarrow\left|x-1\right|+\left|x+2\right|=3\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(VT=\left|x-1\right|+\left|-\left(x+2\right)\right|=\left|x-1\right|+\left|-x-2\right|\)
\(\ge\left|x-1+\left(-x\right)-2\right|=3=VP\)
Đẳng thức xảy ra khi \(x=1\)
Mình giải trước mấy câu dễ dễ ha.
(Tự add điều kiện vào)
Câu 1: \(2\left(2x+1\right)=\sqrt{x+2}-\sqrt{1-x}\)\(\Leftrightarrow2\left(2x+1\right)=\frac{x+2-\left(1-x\right)}{\sqrt{x+2}+\sqrt{1-x}}\)
Thấy \(x=-\frac{1}{2}\) (thoả ĐKXĐ) là nghiệm pt.
Xét \(x\ne-\frac{1}{2}\) thì pt tương đương \(2=\frac{1}{\sqrt{x+2}+\sqrt{1-x}}\Leftrightarrow\sqrt{x+2}+\sqrt{1-x}=2\) (1)
Bình phương lên: \(x+2+1-x+2\sqrt{\left(x+2\right)\left(1-x\right)}=4\Leftrightarrow\sqrt{\left(x+2\right)\left(1-x\right)}=\frac{1}{2}\) (2)
Đến đây từ (1) và (2) dùng định lí Viete đảo thấy pt vô nghiệm.
-----
Câu 2: (Tư tưởng đổi biến quá rõ ràng)
Đặt \(a=\sqrt{x+3},b=\sqrt{6-x}\). Có hệ: \(\hept{\begin{cases}a+b-ab=\frac{6\sqrt{2}-9}{2}\\a^2+b^2=9\end{cases}}\)
(Tự giải tiếp nha bạn. Tới đây đặt \(S=a+b,P=ab\) là ra thôi)
-----
Câu 4: Đặt \(y=x^2\) thì pt trở thành \(y^2+\sqrt{y+2016}=2016\) (\(y\) không âm)
(Bạn tự CM \(y=k=\frac{\sqrt{8061}-1}{2}\) là nghiệm)
Xét \(0\le y< k\) thì vế trái \(< 2016\), xét \(y>k\) thì vế phải \(>2016\).
Vậy pt có nghiệm duy nhất \(y=k\) như trên. Hay pt đầu có 2 nghiệm (cộng trừ)\(\sqrt{\frac{\sqrt{8061}-1}{2}}\)
d/ Điều kiện xác định : \(4\le x\le6\)
Áp dụng bđt Bunhiacopxki vào vế trái của pt :
\(\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le\left(1^2+1^2\right)\left(x-4+6-x\right)\)
\(\Leftrightarrow\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le4\Leftrightarrow\sqrt{x-4}+\sqrt{6-x}\le2\)
Xét vế phải : \(x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\)
Suy ra pt tương đương với : \(\begin{cases}\sqrt{x-4}+\sqrt{6-x}=2\\x^2-10x+27=2\end{cases}\) \(\Leftrightarrow x=5\) (tmđk)
Vậy pt có nghiệm x = 5
a/ ĐKXĐ : \(x\ge0\)
\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}-3\right|=1\) (1)
Tới đây xét các trường hợp :
1. Nếu \(x>9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=9\) (ktm)
2. Nếu \(0\le x< 4\) thì pt (1) \(\Leftrightarrow2-\sqrt{x}+3-\sqrt{x}=1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (ktm)
3. Nếu \(4\le x\le9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+3-\sqrt{x}=1\Leftrightarrow1=1\left(tmđk\right)\)
Vậy kết luận : pt có vô số nghiệm nếu x thuộc khoảng \(4\le x\le9\)
1. a) Ta có: \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{x+2\sqrt{x-1}}.2=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{x+\sqrt{2-1}}.2=\frac{x+3}{2}\)
Bạn tự khai triển ra nha!
b) Tương tự
2) Tự làm
Ps: Ms lớp 6 nên chỉ làm được như vậy thôi! Bạn tự khai triển thành bài nhé!
1)
a) đk x>=1
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\frac{x+3}{2}\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\frac{x+3}{2}\)
vs x>=2
thì pt có dạng
\(\sqrt{x-1}+1+\sqrt{x-1}-1=\frac{x+3}{2}\)
\(4\sqrt{x-1}=x+3\)
\(16x-16=x^2+6x+9\)
\(x^2-10x+25=0\)
x=5(tm)
vs 0<=x<1
pt \(2=\frac{x+3}{2}\)
\(x+3=4\)
\(x=1\)
\(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}=1\)ĐK : x >= 2
\(\Leftrightarrow\sqrt{x-2-4\sqrt{x-2}+4}+\sqrt{x-2-6\sqrt{x-2}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}=1\)
\(\Leftrightarrow\sqrt{x-2}-2+\sqrt{x-2}-3=1\Leftrightarrow2\sqrt{x-2}=6\)
\(\Leftrightarrow\sqrt{x-2}=3\Leftrightarrow x-2=9\Leftrightarrow x=11\)(tmđk)
ĐK : x >= 2
\(\Leftrightarrow\sqrt{\left(x-2\right)-4\sqrt{x-2}+4}+\sqrt{\left(x-2\right)-6\sqrt{x-2}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-2}-2\right|+\left|\sqrt{x-2}-3\right|=1\)(1)
Với 2 ≤ x < 4 (1) trở thành \(2-\sqrt{x-2}+3-\sqrt{x-2}=1\Leftrightarrow-2\sqrt{x-2}=-4\Leftrightarrow\sqrt{x-2}=2\Leftrightarrow x=6\left(ktm\right)\)
Với 4 ≤ x < 11 (1) trở thành \(\sqrt{x-2}-2+3-\sqrt{x-2}=1\Leftrightarrow1=1\left(luondung\right)\)(2)
Với x ≥ 11 (1) trở thành \(\sqrt{x-2}-2+\sqrt{x-2}-3=1\Leftrightarrow2\sqrt{x-2}=6\Leftrightarrow\sqrt{x-2}=3\Leftrightarrow x=11\)( tm ) (3)
Từ (2) và (3) => S = { x | 4 ≤ x ≤ 11 }