Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
\(\Leftrightarrow3\sqrt{x-2}=\sqrt{x^2-4}\)
\(\Leftrightarrow3\sqrt{x-2}=\sqrt{x-2}.\sqrt{x+2}\)
\(\Leftrightarrow3=\sqrt{x+2}\)
\(\Leftrightarrow x+2=9\Leftrightarrow x=7\)
Vậy \(x=7\)
a) đkxđ: \(\begin{cases}\sqrt{x^2-4}\ge0\\\sqrt{x^2}+4x+4\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}\begin{cases}x-2\ge0\\x+2\ge0\end{cases}\\x+2\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ge2\\x\le-2\end{cases}\) \(\Leftrightarrow-2\ge x\ge2\)
\(\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}+\sqrt{\left(x+2\right)^2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=x+2\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=\left(x+2\right)^2\)
\(\Leftrightarrow\left(x+2\right)\left(x-2-x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
S={-2}
b) đkxđ: \(\begin{cases}\sqrt{1-x^2}\ge0\\\sqrt{x+1}\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}1-x^2\ge0\\x+1\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x^2\le1\\x\ge-1\end{cases}\) \(\Leftrightarrow\begin{cases}\begin{cases}x\le1\\x\ge-1\end{cases}\\x\ge-1\end{cases}\) \(\Leftrightarrow-1\le x\le1\)
\(\sqrt{1-x^2}+\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{1-x^2}=-\sqrt{x+1}\)
\(\Leftrightarrow1-x^2=x+1\)
\(\Leftrightarrow-x-x^2=0\)
\(\Leftrightarrow-x\left(1+x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\1+x=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\left(N\right)\\x=-1\left(N\right)\end{array}\right.\)
S={-1;0}
a)\(pt\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Rightarrow x=3\) pt trong ngoặc vô nghiệm
b)\(pt\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x^2-4\right)=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(\frac{1}{\sqrt{x^2-4}}-1\right)=0\)
\(\Rightarrow x=\pm2;\frac{1}{\sqrt{x^2-4}}-1=0\)
\(\Rightarrow x^2=5\Rightarrow x=\pm\sqrt{5}\)
Vậy no pt là x=±2;x=± căn 5
a/\(\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+2\right)^2}=0\Leftrightarrow x-2+x+2=0\Rightarrow x=0\)
\(x^2-4=\left(x-2\right)^2\) à chắc bn thông minh lắm mới sáng chế bđt mới đc đó
\(a,\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\\sqrt{x+2}=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-\frac{17}{9}\left(l\right)\end{cases}}\)
\(b,\Leftrightarrow\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)
Bạn giải nốt nhá
\(a,PT\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)
\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)
Vậy............................................
\(b,PT\Leftrightarrow\sqrt{\left(x^2-1\right)^2}=x-1\)
\(\Leftrightarrow x^2-1=x-1\Leftrightarrow x^2=x\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy...............................................
1, \(x^2-5x+4-\sqrt{5-x}-\sqrt{x-2}=0\)ĐKXĐ \(2\le x\le5\)
ĐK dấu bằng xảy ra \(x^2-5x+4\ge0\)
Kết hơp với ĐKXĐ=> \(4\le x\le5\)
Khi đó Phương trình tương đương
\(x^2-7x+11+\left(x-4-\sqrt{5-x}\right)+\left(x-3-\sqrt{x-2}\right)=0\)
<=> \(x^2-7x+11+\frac{x^2-7x+11}{x-4+\sqrt{5-x}}+\frac{x^2-7x+11}{x-3+\sqrt{x-2}}=0\)
=> \(\orbr{\begin{cases}x^2-7x+11=0\\1+\frac{1}{x-4+\sqrt{5-x}}+\frac{1}{x-3+\sqrt{x-2}}=0\left(2\right)\end{cases}}\)
Phương trình (2) vô nghiệm với \(4\le x\le5\)=> VT>0
\(x^2-7x+11=0\)
Với \(4\le x\le5\)
\(S=\left\{\frac{7+\sqrt{5}}{2}\right\}\)
2.\(\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\)ĐKXĐ \(-2\le x\le3\)
<=> \(3x^3+3x^2-12x-3=3\sqrt{x+2}+3\sqrt{3-x}\)
<=> \(3x^3+3x^2-12x-12+\left(x+4-3\sqrt{x+2}\right)+\left(5-x-3\sqrt{3-x}\right)=0\)
<=> \(3\left(x^2-x-2\right)\left(x+2\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}=0\)
=> \(\orbr{\begin{cases}x^2-x-2=0\\3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{x-3}}=0\left(2\right)\end{cases}}\)
Phương trình (2) vô nghiệm với\(-2\le x\le3\)=> VT>0
\(S=\left\{2;-1\right\}\)
c)
\(\sqrt{\left(x-1\right)^2}=2\)
x-1=2
x=3
d) \(\Leftrightarrow2+3\sqrt{x}+x=x+5\)
\(\Leftrightarrow3\sqrt{x}=3\)
<=> x=1
a)
\(\Leftrightarrow\sqrt{\left(x+2\right)}.\sqrt{\left(x-2\right)}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+2}=0\\\sqrt{x-2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
b)
\(\Leftrightarrow\sqrt{\left(x-2\right)+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{\left(x-2\right)-2\sqrt{2}.\sqrt{x-2}+2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(\Leftrightarrow2\sqrt{x-2}+\sqrt{2}-\sqrt{2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x-2}=\sqrt{2}\)
\(\Leftrightarrow x-2=2\)
\(\Leftrightarrow x=4\)
2 phần kia mình đăng sau (dài quá r)
\(\sqrt{x^2-4}-x+2=0\) ĐK : x \(\ge\)2 ; x \(\le\)- 2
\(\Leftrightarrow\sqrt{x^2-4}=x-2\)
\(\Leftrightarrow(\sqrt{x^2-4})^2=(x-2)^2\)
\(\Leftrightarrow x^2-4=x^2-4x+4\)
\(\Leftrightarrow4x=4+4\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) ( thỏa mãn ĐK )