\(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(\sqrt{x^2-2x+5}+\sqrt{x^2+2x+10}=\sqrt{29}\) 

<=> \(\sqrt{x^2-2x+5}=\sqrt{29}-\sqrt{x^2+2x+10}\) 

<=> \(x^2-2x+5=x^2+2x+39-2\sqrt{29\left(x^2+2x+10\right)}\) 

<=> \(2\sqrt{29x^2+58x+290}=4x+34\) 

<=> \(\sqrt{29x^2+58x+290}=2x+17\) 

<=> \(29x^2+58x+290=4x^2+68x+289\) 

<=> \(25x^2-10x+1=0\) 

<=> \(\left(5x-1\right)^2=0\) 

<=> \(x=\frac{1}{5}\)

10 tháng 9 2016

Nó có 1 nghiệm là 9

Bạn chứng minh nó là nghiệm duy nhất đi

11 tháng 9 2016

1 nghiệm ls 9

11 tháng 10 2018

ĐKXĐ \(x\ge\frac{5}{2}\)

\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

\(\Rightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)

\(\Rightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Rightarrow\sqrt{2x-5}+3+|\sqrt{2x-5}-1|=4\)(1)

+, \(\frac{5}{2}\le x< 3\),khi đó pt (1) trở thành

\(\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)\(\Rightarrow0x=0\)(luôn đúng)

+, \(x\ge3\),khi đo pt (1) trở thành

\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)

\(\sqrt{2x-5}=1\Rightarrow2x-5=1\Rightarrow x=3\)

Vậy pt đã cho có nghiệm là \(\frac{5}{2}\le x\le3\)

9 tháng 8 2017

ĐKXĐ: \(2x-5\ge0\Leftrightarrow x\ge2,5\)

pt\(\Leftrightarrow\sqrt{2x+4-2.3\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)\(\Leftrightarrow\sqrt{2x-5-2.3\sqrt{2x-5}+9}+\sqrt{2x-5+2\sqrt{2x-5}+1}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}-3\right|+\left|\sqrt{2x-5}+1\right|=4\)

\(\Leftrightarrow\left|3-\sqrt{2x-5}\right|+\left|\sqrt{2x-5}+1\right|=4\)

Có: \(VT=\left|3-\sqrt{2x-5}\right|+\left|\sqrt{2x-5}+1\right|\ge\left|3-\sqrt{2x-5}+\sqrt{2x-5}+1\right|=4=VP\)

Dấu "=" xảy ra khi \(\left(3-\sqrt{2x-5}\right)\left(\sqrt{2x-5}+1\right)\ge0\)

Mà \(\sqrt{2x-5}+1\ge0\Rightarrow3-\sqrt{2x-5}\ge0\Rightarrow\sqrt{2x-5}\le3\)

\(\Rightarrow0\le\sqrt{2x-5}\le3\)

\(\Leftrightarrow0\le2x-5\le9\)

\(\Leftrightarrow2,5\le x\le7\)(TM)

18 tháng 9 2017

pt1 nhân 2 vế với căn 2

30 tháng 8 2019

b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:

\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)

Cái ngoặc to vô nghiệm.Do đó x = 1(TM)

Vậy...

P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn

30 tháng 8 2019

Èo, bỏ chữ Đặt giúp em(nãy tính làm cách đặt ẩn phụ như không ra mà quên xóa đi) >_<