\(\sqrt{x-2\sqrt{x-3}-2}=1\)

các cậu giúp mk vs kìa...

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

\(\sqrt{x-2\sqrt{x-3}-2}=1\)

=> \(x-2\sqrt{x-3}=1^2=1\)

=> \(-2\sqrt{x-3}=1-x+2\)

=> \(-2\sqrt{x-3}=3-x\)

=> \(\left(-2\sqrt{x-3}\right)^2=\left(3-x\right)^2\)

=> \(4\left(x-3\right)=9-6x+x^2\)

=> \(4x-12=9-6x+x^2\)

=> \(4x-12-9+6x-x^2=0\)

=> \(10x-21-x^2=0\)

Mình xin hết ( biết có vậy )

20 tháng 6 2019

\(\sqrt{x-2\sqrt{x-3}+2}=1\)

\(\Leftrightarrow\sqrt{x-3-2\sqrt{x-3}+1}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}-1\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-3}-1\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}-1=1\\\sqrt{x-3}-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

Vậy....

20 tháng 5 2019

Câu hỏi: Giải phương trình sau ....

Trả lời: Đây là bài lp 9

Mk lp 7 nên ko bt

Y
5 tháng 6 2019

Đặt \(x-3=t\) thì pt đã cho trở thành :

\(\frac{3}{t}-\frac{2}{t+2}=\frac{t+2}{2}-\frac{t}{3}\)

\(\Leftrightarrow\frac{3t+6-2t}{t\left(t+2\right)}=\frac{3t+6-2t}{6}\)

\(\Leftrightarrow\left(t+6\right)\left[\frac{1}{t\left(t+2\right)}-\frac{1}{6}\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t+6=0\\\frac{1}{t\left(t+2\right)}=\frac{1}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=-6\\t^2+2t-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=-6\\\left(t+1\right)^2=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\t=\sqrt{7}-1\\t=-\sqrt{7}-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2+\sqrt{7}\\x=2-\sqrt{7}\end{matrix}\right.\) ( TM )

26 tháng 6 2019

Em thử ạ!

ĐKXĐ: \(x\ge1\)

Đặt \(\sqrt{x-1}=t\ge0\Rightarrow x=t^2+1\)

\(PT\Leftrightarrow\sqrt{t^2-2t+1}+\sqrt{t^2+2t+1}=2\)

\(\Leftrightarrow\sqrt{\left(t-1\right)^2}+\sqrt{\left(t+1\right)^2}=2\)

\(\Leftrightarrow\left|t-1\right|+\left|t+1\right|=2\)

Với t <-1 => ko thỏa mãn điều kiện nên ta không cần xét

Với \(-1\le t< 1\) thì pt trở thành 2 = 2 (đúng)

Kết hợp đk t >= 0 suy ra \(0\le t< 1\Leftrightarrow0\le\sqrt{x-1}< 1\Leftrightarrow1\le x< 2\) (1)

Với \(t\ge1\). Phương trình trở thành \(2t=2\Leftrightarrow t=1\)

Suy ra x = 2 (2)

Kết hợp (1) và (2) suy ra \(1\le x\le2\)

25 tháng 6 2019

\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}=2}\) \(\left(x\ge1\right)\)

\(\Leftrightarrow x-2\sqrt{x-1}+x+2\sqrt{x-1}+2\sqrt{\left(x-2\sqrt{x-1}\right)\left(x+2\sqrt{x-1}\right)}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-4\left(x-1\right)}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-4x+4}=4\)

\(\Leftrightarrow2|x-2|=4-2x\)(1)

Với \(x\ge2\) thì (1) \(\Leftrightarrow2x-4=4-2x\Leftrightarrow4x=8\Leftrightarrow x=2\)

Với \(1\le x< 2\) thì (1) \(\Leftrightarrow2\left(2-x\right)=4-2x\Leftrightarrow4-2x=4-2x\) (luôn đg)

Vậy x = 2

Tôi nghĩ là như này :)) Sai thì chịu nhá :((

Ta có pt : \(\left|x+1\right|+3\left|x-1\right|=x+2+\left|x\right|+2\left|x-2\right|\) (1)

Ta thấy VT pt (1) là : \(\left|x+1\right|+3\left|x-1\right|\ge0\forall x\)

Nên VP pt (1) cũng phải lớn hơn bằng 0

Có nghĩa là \(x+2\ge0\) \(\Leftrightarrow x\ge-2\)

Khi đó : \(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\3\left|x-1\right|=3\left(1-x\right)\\\left|x\right|=-x\\2\left|x-2\right|=2\left(2-x\right)\end{matrix}\right.\)

Vậy pt (1) \(\Leftrightarrow-x-1+3-3x=x+2-x+4-2x\)

\(\Leftrightarrow2x=-4\Leftrightarrow x=-2\) ( thỏa mãn )

Vậy \(x=-2\) thỏa mãn pt.

6 tháng 2 2020
\(\left|x+1\right|\) - + + + +
3\(\left|x-1\right|\) - - + + +
\(\left|x\right|\) - - - + +
\(2\left|x-2\right|\) - - - - +
PT 2x-4=5x-2 2x-4=5x-2 -4x+2=2x-2 -4x+2=-2x+6

-1 0 1 2

1) x=-2/3>-1( loại)

2)

16 tháng 1 2019

2.a)\(\dfrac{3\text{x}-2}{2}\)=\(\dfrac{1-2\text{x}}{3}\)

<=>\(\dfrac{9\text{x}-6}{6}\)=\(\dfrac{2-4\text{x}}{6}\)

<=>9x-6=2-4x

<=>9x+4x=2+6

<=>13x=8

<=>x=\(\dfrac{8}{13}\)

16 tháng 1 2019

1.a)2(x-0,5)+3=0,25(4x-1)

<=>2x-1+3=x-1phần4

<=>2x-x=-1/4+1-3

<=>x=-3/4

20 tháng 8 2016

Đặt √(x+1) làm thừa số chung rồi phân tích tiếp. Nghiệm là 0 và 3

11 tháng 7 2019

\(\sqrt{x+5}+\sqrt{2-x}=x^2-25\)

Đề đúng ch bn, kiểm tra lại giúp mk vs

12 tháng 7 2019

Ta xét ĐKXĐ của bài toán:

\(\left\{{}\begin{matrix}x+5\ge0\\2-x\ge0\\x^2-25\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x\le2\\\left|x\right|\ge5\end{matrix}\right.\)\(\Leftrightarrow x=-5\)

Thử lại vào phương trình thấy không thỏa mãn.

Vậy phương trình vô nghiệm.

25 tháng 6 2019

\(x\sqrt{x}-3\sqrt{x}-x=-3\) \(\left(x\ge0\right)\)

\(\Leftrightarrow x\sqrt{x}-3\sqrt{x}-x+3=0\)

\(\Leftrightarrow\sqrt{x}\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) (t/m)

Vậy pt có tập nghiệm .....