Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
a) dat x-1=a
x=a+1
\(a+1+\sqrt{5+\sqrt{a}}=6\)
\(5-a=\sqrt{5+\sqrt{a}}\)
\(25-10a+a^2=5+\sqrt{a}\)
\(20-10a+a^2-\sqrt{a}=0\)
(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0
Thiên Thư mk cx hk lp 7 nek
a\ \(\sqrt{x^2-4x+4}=6\)
\(x^2-4x+4=6^2=36\)
\(x\left(x-4\right)=32\)
ta có \(32=8.4=\left(-8\right)\left(-4\right)\)
\(\Rightarrow x\in\left\{8;-4\right\}\)
b)\(\sqrt{2x+5}=2x-1\)
\(2x+4=4x^2-4x\)
\(2\left(x+2\right)=4x\left(4x-1\right)\)
\(........................\)
e bí mất r a ạ
a) \(\sqrt{2x-1}=\sqrt{5}\)
ĐK : \(x\ge\frac{1}{2}\)
Bình phương hai vế
pt <=> \(2x-1=25\)
<=> \(2x=26\)
<=> \(x=13\left(tm\right)\)
Vậy S = { 13 }
b) \(\sqrt{4-5x}=12\)
ĐK : \(x\le\frac{4}{5}\)
Bình phương hai vế
pt <=> \(4-5x=144\)
<=> \(-5x=140\)
<=> \(x=-28\left(tm\right)\)
Vậy S = { -28 }
c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]>
<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)
<=> \(\left|x+3\right|=3x-1\)
<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)
Vậy S = { 2 }
d) \(2\sqrt{x}\le\sqrt{10}\)
ĐK : \(x\ge0\)
Bình phương hai vế
bpt <=> \(4x\le10\)
<=> \(x\le\frac{10}{4}\)
Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)
a) \(ĐKXĐ:x\ge\frac{1}{2}\)
\(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=3\)
b) \(ĐKXĐ:x\le\frac{4}{5}\)
\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )
\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=-28\)
c) \(ĐKXĐ:x\ge\frac{1}{3}\)
\(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)
thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)
\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)
\(\Leftrightarrow x=\frac{-1}{2}\)( không thỏa mãn ĐKXĐ )
+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)
thì \(\left|x+3\right|=x+3\)
\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )
Vậy nghiệm của phương trình là \(x=2\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(ĐKXĐ:\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}\Leftrightarrow}x\ge1}\)
\(\sqrt{x-1}+\sqrt{2x-1}=5\) (1)
Bình phương cả 2 vế ta được:
\(\left(1\right)\Rightarrow x-1+2x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}=5^2\)
\(\Leftrightarrow3x-2+2\sqrt{2x^3-3x+1}=25\)
\(\Leftrightarrow2\sqrt{2x^3-3x+1}=27-3x\) (2)
Tiếp tục bình phương cả 2 vế lần hai, ta có:
\(\left(2\right)\Rightarrow4.\left(2x^3-3x+1\right)=\left(27-3x\right)^2\)
\(\Leftrightarrow8x^3-12x+4=729-81x+9x^2\)
\(\Leftrightarrow8x^3-9x^2+69x-725=0\)
........................................................................
........................................................................
Đến đây bạn tự giải tiếp pt nha, nếu có sơ hở hoặc sai chỗ nào ns cho mìk nhé!
(Chúc bạn học tốt nhoa!)