\(\sqrt{x-12}+\sqrt{14-x}=x^2-26x+171\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

mị mới lớp 5 ahihi

29 tháng 11 2019

ĐK: \(12\le x\le14\)

Sau khi nhân liên hợp chúng ta có được:

\(PT\Leftrightarrow\left(x-13\right)^2\left[1+\frac{\frac{2}{1+\sqrt{\left(x-12\right)\left(14-x\right)}}}{2+\sqrt{x-12}+\sqrt{14-x}}\right]=0\)

\(\Leftrightarrow x=13\)

Khủng khiếp tí nhưng chắc không sao:v

1 tháng 5 2020

\(\sqrt{29-x}+\sqrt{x+3}=x^2-26x+177\left(1\right)\)

ĐK -3 =<x =<29

Với mọi a,b >=0 ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Thay \(a=\sqrt{29-x};b=\sqrt{x+3}\)ta có:

\(\sqrt{29-x}+\sqrt{x+3}\le\sqrt{2\left(29-x+x+3\right)}=8\)

\(x^2-26x+177=\left(x-13\right)^2+8\ge8\)

\(\Rightarrow\sqrt{29-x}+\sqrt{x+3}\le x^2-26x+177\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{29-x}=\sqrt{x+3}\\x-13=0\end{cases}\Leftrightarrow x=13}\)

Do đó (1) <=> x=13 (tm)

NV
2 tháng 4 2020

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{26x+5}=a\ge0\\\sqrt{x^2+30}=b>0\end{matrix}\right.\)

\(\Rightarrow\frac{a^2}{b}+2a=3b\)

\(\Leftrightarrow a^2+2ab-3b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+3b\right)=0\)

\(\Leftrightarrow a-b=0\)

\(\Leftrightarrow\sqrt{26x+5}=\sqrt{x^2+30}\)

\(\Leftrightarrow x^2-26x+25=0\Rightarrow\left[{}\begin{matrix}x=1\\x=25\end{matrix}\right.\)

6 tháng 3 2021

a) \(x=-2\)

b) \(x=6\)

18 tháng 12 2021

a) \(\sqrt{14-x}\)+\(\sqrt{2-x}\)=6 ( đk: x<14 <; x<2)

\(\sqrt{14-x}\)=6-\(\sqrt{2-x}\)

⇔(\(\sqrt{14-x}\))2= ( 6-\(\sqrt{2-x}\))2

⇔14-x= 36-12\(\sqrt{2-x}\)+2-x

⇔-x+x+12\(\sqrt{2-x}\)= -14+36+2

⇔12\(\sqrt{2-x}\)= 24

\(\sqrt{2-x}\)=2

⇔(\(\sqrt{2-x}\))2= 4 

⇔2-x=4

⇔-x=2 

⇔x=-2 ( thỏa man điều kiện xác định)

          Vậy x=-2

b)\(\sqrt{x+3}\)-\(\sqrt{x-5}\)=2 ( đk :x≥5) 

\(\sqrt{x+3}\)= 2+\(\sqrt{x-5}\)

⇔(\(\sqrt{x+3}\))2= (2+\(\sqrt{x-5}\))2

⇔x+3= 4 +4\(\sqrt{x-5}\) +x-5

⇔x-x-\(4\sqrt{x-5}\)= -3+4-5

⇔ \(-4\sqrt{x-5}\)=-4

\(\sqrt{x-5}\)=1

⇔x-5=1

⇔x=6 ( thỏa mãn điều kiện xác định)

Vậy x=6 

 

 

19 tháng 8 2016

d/ Điều kiện xác định : \(4\le x\le6\)

 Áp dụng bđt Bunhiacopxki vào vế trái của pt : 

\(\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le\left(1^2+1^2\right)\left(x-4+6-x\right)\)

\(\Leftrightarrow\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le4\Leftrightarrow\sqrt{x-4}+\sqrt{6-x}\le2\)

Xét vế phải : \(x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\)

Suy ra pt tương đương với : \(\begin{cases}\sqrt{x-4}+\sqrt{6-x}=2\\x^2-10x+27=2\end{cases}\) \(\Leftrightarrow x=5\) (tmđk)

Vậy pt có nghiệm x = 5

19 tháng 8 2016

a/ ĐKXĐ : \(x\ge0\) 

\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}-3\right|=1\) (1)

Tới đây xét các trường hợp : 

1. Nếu \(x>9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=9\) (ktm)

2. Nếu \(0\le x< 4\) thì pt (1) \(\Leftrightarrow2-\sqrt{x}+3-\sqrt{x}=1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (ktm)

3. Nếu \(4\le x\le9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+3-\sqrt{x}=1\Leftrightarrow1=1\left(tmđk\right)\)

Vậy kết luận : pt có vô số nghiệm nếu x thuộc khoảng \(4\le x\le9\) 

26 tháng 7 2017

a/ \(\hept{\begin{cases}VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\\VP=4-2x-x^2=5-\left(x+1\right)^2\le5\end{cases}}\)

Dấu = xảy ra khi \(x=-1\)

b/ \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)

Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\)thì ta có

\(\hept{\begin{cases}a^2+b^2=2\\a+b=-a^2b^2+3\end{cases}}\)

Đặt \(\hept{\begin{cases}a+b=S\\ab=P\end{cases}}\) thì ta có

\(\hept{\begin{cases}S^2-2P=2\\S=3-P^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(3-P^2\right)^2-2P=2\\S=3-P^2\end{cases}}\)

Thôi làm tiếp đi làm biếng quá.

26 tháng 7 2017

a)3x2+6x+7+5x2+10x+14=42xx2

\(\Leftrightarrow16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21\)

\(\Leftrightarrow-x^2-2x+4\)

  Thế vào ta được:

\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}=-17\)

\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+17=0\)

\(16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21=4-x\left(x+2\right)\)

19 tháng 7 2019

À câu a mình tự làm được rồi nhé! Các bạn chỉ cần làm câu b cho mình là được.

19 tháng 7 2019

b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)

ĐK \(x\ge0\)

Pt 

<=> \(2\sqrt{x}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)

<=> \(4x+x^2+x+4\sqrt{x^2\left(x+1\right)}=x^2+10x+9\)

 <=> \(4x\sqrt{x+1}=5x+9\)

<=> \(16x^2\left(x+1\right)=25x^2+90x+81\)với mọi \(x\ge0\)

<=> \(16x^3-9x^2-90x-81=0\)

<=> \(x=3\)(tm ĐK)

Vậy x=3