Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=2 không phải là nghiệm nên ta chia cả hai vế của phương trình cho (x-2)2
\(5\sqrt[n]{\left(\frac{x+2}{x-2}\right)^2}-4\sqrt[n]{\frac{x+2}{x-2}}-1=0\)(1)
Đặt\(\sqrt[n]{\frac{x+2}{x-2}}=y\)thì (1)trở thành
\(5y^2-4y-1=0\)
\(\Leftrightarrow\left(y-1\right)\left(5y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y_1=1\\y_2=-\frac{1}{5}\end{cases}}\)
Xét \(y=1\Leftrightarrow\sqrt[n]{\frac{x+2}{x-2}}=1\)phương trình vô nghiệm
Xét \(y=-\frac{1}{5}\Leftrightarrow\sqrt[n]{\frac{x+2}{x-2}}=-\frac{1}{5}\)(2)
Nếu n chẵn thì (2) vô nghiệm
Nếu n lẻ thì (2)\(\Leftrightarrow\frac{x+2}{x-2}=-\frac{1}{5^n}\Leftrightarrow x=\frac{2\left(1-5^n\right)}{1+5^n}\)
Tóm lại : Nếu n chẵn thì phương trình đã cho vô nghiệm
Nếu n lẻ thì phương trình có nghiệm \(x=\frac{2\left(1-5^n\right)}{1+5^n}\)
1 . \(\sqrt{x^4-2x^2+1}=x-1\)
<=> \(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=> \(x^2-1=x-1\)
<=> \(x^2-x=0\)(vậy pt vô nghiệm)
1,\(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=>\(x^2-x=0\)
<=>\(\orbr{\begin{cases}x1=0\\x2=1\end{cases}}\)
1,\(\sqrt{\left(x^2+4\right)}=5-\sqrt{\left(x^2+10\right)}\)
<=>\(x^2+4=25-10\sqrt{x^2+10}+x^2+10\)
<=>x^2 = -0.39 vô lý => vô nhiệm
a) \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=4-x\)
ĐKXĐ : x ≥ 0
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=-\left(x-4\right)\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=0\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}+x+2\right)=0\)
⇔ \(7\left(\sqrt{x}-2\right)=0\)
⇔ \(\sqrt{x}-2=0\)
⇔ \(\sqrt{x}=2\)
⇔ \(x=4\)( tm )
b) \(\frac{\sqrt{x}+5}{\sqrt{x}-4}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne16\end{cases}}\)
⇔ \(\left(\sqrt{x}+5\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)\)
⇔ \(x+8\sqrt{x}+15=x-6\sqrt{x}+8\)
⇔ \(x+8\sqrt{x}-x+6\sqrt{x}=8-15\)
⇔ \(14\sqrt{x}=-7\)
⇔ \(\sqrt{x}=-2\)( vô lí )
=> Phương trình vô nghiệm