\(\sqrt{75}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

\(\sqrt{75}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(\Leftrightarrow\)\(5\sqrt{3}-\left(2-\sqrt{3}\right)\)

\(\Leftrightarrow\)\(5\sqrt{3}-\sqrt{3}+2\)

\(\Leftrightarrow\)\(4\sqrt{3}+2\)

4 tháng 4 2020

\(\Leftrightarrow\sqrt{75}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(\Leftrightarrow5\sqrt{3}-\left(2-\sqrt{3}\right)\)

\(\Leftrightarrow5\sqrt{3}-2+\sqrt{3}\)

\(\Leftrightarrow6\sqrt{3}-2\)

k cho mk nha

13 tháng 7 2016

a) 4

b) 10

c)4

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

3 tháng 8 2016

a) \(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)

\(=\left(2+6+15-36\right)\sqrt{3}=-13\sqrt{3}\)

b) \(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)=6\left(3+8-5\right)=36\)

 

3 tháng 8 2016

a)\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)

\(=\sqrt{4\cdot3}+2\sqrt{9\cdot3}+3\sqrt{25\cdot3}-9\sqrt{16\cdot3}\)

\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)

\(=-13\sqrt{3}\)

b)\(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)\)

\(=2\sqrt{3}\left(\sqrt{9\cdot3}+2\sqrt{16\cdot3}-\sqrt{25\cdot3}\right)\)

\(=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)

\(2\sqrt{3}\cdot6\sqrt{3}=12\cdot3=36\)

 

11 tháng 8 2018

bài 1:

a:\(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{\left(1+\sqrt{3}\right)^2}\)
=\(\sqrt{3}-2+1+\sqrt{3}\)
=\(2\sqrt{3}-1\)
b; dài quá mink lười làm thông cảm 
bài 2:
\(\sqrt{x^2-2x+1}=7\)
=>\(\sqrt{\left(x-1\right)^2}=7 \)
=>\(\orbr{\begin{cases}x-1=7\\x-1=-7\end{cases}}\)
=>\(\orbr{\begin{cases}x=8\\x=-6\end{cases}}\)
b: \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
=>\(\sqrt{4\left(x-5\right)}-9\sqrt{x-5}=\sqrt{1-x}\)
\(=2\sqrt{x-5}-9\sqrt{x-5}=\sqrt{1-x}\)
=>\(-7\sqrt{x-5}=\sqrt{1-x}\)
=\(-7.\left(x-5\right)=1-x\)
=>\(-7x+35=1-x\)
=>\(-7x+x=1-35\)
=>\(-6x=-34\)
=>\(x\approx5.667\)
mink sợ câu b bài 2 sai đó bạn

11 tháng 8 2018

1 a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(|2-\sqrt{3}|+|1+\sqrt{3}|\)

\(2-\sqrt{3}+1+\sqrt{3}\)

\(2+1\)\(3\)

b) \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\cdot\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{6}{3^2}}-4\sqrt{\frac{6}{2^2}}\right)\cdot\left(3\sqrt{\frac{6}{3^2}}-\sqrt{6}\sqrt{2}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-\frac{4}{2}\sqrt{6}\right)\cdot\left(\frac{3}{3}\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)

\(\left(\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\right)\cdot\left(\sqrt{6}\left(1-\sqrt{2}-1\right)\right)\)

\(\sqrt{6}\frac{1}{6}\cdot\sqrt{6}\left(-\sqrt{2}\right)\)

\(\sqrt{6}^2\left(\frac{-\sqrt{2}}{6}\right)\)

\(6\frac{-\sqrt{2}}{6}\)=\(-\sqrt{2}\)

2 a) \(\sqrt{x^2-2x+1}=7\)

<=> \(\sqrt{x^2-2x\cdot1+1^2}=7\)

<=> \(\sqrt{\left(x-1\right)^2}=7\)

<=> \(|x-1|=7\)

Nếu \(x-1>=0\)=>\(x>=1\)

=> \(|x-1|=x-1\)

\(x-1=7\)<=>\(x=8\)(thỏa)

Nếu \(x-1< 0\)=>\(x< 1\)

=> \(|x-1|=-\left(x-1\right)=1-x\)

\(1-x=7\)<=>\(-x=6\)<=> \(x=-6\)(thỏa)

Vậy x=8 hoặc x=-6

b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)

<=> \(\sqrt{4\left(x-5\right)}-3\frac{\sqrt{x-5}}{3}=\sqrt{1-x}\)

<=> \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)

<=> \(\sqrt{x-5}=\sqrt{1-x}\)

ĐK \(x-5>=0\)<=> \(x=5\)

\(1-x\)<=> \(-x=-1\)<=> \(x=1\)

Ta có \(\sqrt{x-5}=\sqrt{1-x}\)

<=> \(\left(\sqrt{x-5}\right)^2=\left(\sqrt{1-x}\right)^2\)

<=> \(x-5=1-x\)

<=> \(x-x=1+5\)

<=> \(0x=6\)(vô nghiệm)

Vậy phương trình vô nghiệm

Kết bạn với mình nha :)

14 tháng 8 2020

bình phương 2 vế lên ta được 

\(x+2\sqrt{x-1}+x-2\sqrt{x-1}+2\sqrt{x^2-4\left(x-1\right)}=\frac{\left(x+3\right)^2}{4}\)

\(< =>2x+2\sqrt{x^2-4x+1}=\frac{x^2+6x+9}{4}\)

\(< =>2\sqrt{x^2-4x+1}=\frac{x^2-2x+9}{4}\)

\(< =>\sqrt{x^2-4x+1}=\frac{x^2-2x+9}{8}\)

tiếp tục mình phương 2 vế thì sẽ ra

14 tháng 8 2020

\(b,(\sqrt{6}+\sqrt{2})\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)

\(=(\sqrt{2}.\sqrt{3}+\sqrt{2})\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)

\(=\sqrt{2}.\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)

\(=\sqrt{2}.\sqrt{\sqrt{3}+2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\)

\(=\sqrt{2\sqrt{3}+4}\left(3+\sqrt{3}-2\sqrt{3}-2\right)\)

\(=\sqrt{\sqrt{3}^2+2\sqrt{3}+1^2}\left(1-\sqrt{3}\right)\)

\(=\sqrt{\left(1+\sqrt{3}\right)^2}\left(1-\sqrt{3}\right)\)

\(=\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)\)

\(=1^2-\sqrt{3}^2\)

\(=1-3=-2\)