Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\)
ĐKXĐ : \(5\le x\le7\)
Bình phương vế trái ta được:
\(VT^2=7-x+x-5+2\sqrt{\left(7-x\right)\left(x-5\right)}\)
\(=2+2\sqrt{-x^2+12x-35}\)
\(=2+2\sqrt{1-\left(x^2-12x+36\right)}\)
\(=2+2\sqrt{1-\left(x-6\right)^2}\le2+2.1=4\)
=> \(VT\le2\) \(\left(VT\ge0\right)\) (1)
\(VP=x^2-12x+38=\left(x^2-12x+36\right)+2=\left(x-6\right)^2+2\ge2\) (2)
Từ (1) và (2) suy ra VT=VP=2
=> x=6 (thỏa mãn ĐKXĐ)
Vậy ...
b)\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{x^2+2x-3}=4-2x\)
ĐKXĐ : \(x\ge1\)
Với ĐKXĐ ta luôn có: \(VT=\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x+3\right)}\ge\sqrt{4}=2\) (1)
\(VP=4-2x=2\left(2-x\right)\le2\) (2)
Từ (1) và (2) suy ra VT = VP = 2
=> x=1 ( Thỏa mãn ĐKXĐ )
Vậy ...
b) đặt \(\sqrt{3x+1}=a\)(\(a\ge0\))
\(PT\Leftrightarrow\dfrac{a^2-1}{\sqrt{a^2+9}}+1=a\)
\(\Leftrightarrow\left(a-1\right)\left(1-\dfrac{a+1}{\sqrt{a^2+9}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+1=\sqrt{a^2+9}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)(tm)
c) bunyalovsky:
\(VT^2\le2\left(7-x+x-5\right)=4\)
\(\Leftrightarrow VT\le2\)
\(VF=\left(x-6\right)^2+2\ge2\)
Dấu = xảy ra khi x=6
c) Đặt \(a=\sqrt{x-4},b=\sqrt{y-4}\)với \(a,b\ge0\)thì pt đã cho trở thành:
\(2\left(a^2+4\right)b+2\left(b^2+4\right)a=\left(a^2+4\right)\left(b^2+4\right)\). chia 2 vế cho \(\left(a^2+4\right)\left(b^2+4\right)\)thì pt trở thành :
\(\frac{2b}{b^2+4}+\frac{2a}{a^2+4}=1\). Để ý rằng a=0 hoặc b=0 không thỏa mãn pt.
Xét \(a,b>0\). Theo BĐT AM-GM ta có: \(b^2+4\ge2\sqrt{4b^2}=4b,a^2+4\ge4a\)
\(\Rightarrow VT\le\frac{2a}{4a}+\frac{2b}{4b}=1\), dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a^2=4\\b^2=4\end{cases}\Leftrightarrow a=b=2\Leftrightarrow x=y=8}\)
Vậy x=8,y=8 là nghiệm của pt
a)
\(\sqrt{4x-4}-\sqrt{9x-9}+\sqrt{25x-25}=4+\sqrt{16x-16}\\ \Leftrightarrow2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}+5\sqrt{x-1}=4\\ \Leftrightarrow0\sqrt{x-1}=4\\ \Rightarrow kh\text{ô}ng\:c\text{ó}\:gi\text{á}\:tr\text{ị}\:x\:th\text{õa}\:m\text{ãn}\)
b)
\(•\sqrt{7-x}+\sqrt{x-5}\le\sqrt{2.\left(7-x+x-5\right)}=2\\ •x^2-12x+38=\left(x-6\right)^2+2\ge2\)
ta thấy \(VT\le2\:v\text{à}\:VP\ge2\) nên \(VT=VP=2\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}7-x=x-5\\x-6=0\end{matrix}\right.\Rightarrow x=6\)
vậy nghiệm của phương trình trên là x=6
\(a,\sqrt{4x^2-20x+25}+2x=5\)
\(\Rightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)
\(\Rightarrow4x=10\Rightarrow x=\frac{5}{2}\)
\(b,\sqrt{1-12x+36x^2}=5\)
\(\Rightarrow6x-1=5\)
\(\Rightarrow6x=6\Rightarrow x=1\)
\(c,\sqrt{x^2+x}=x\)
\(\Rightarrow x^2+x=x^2\)
\(\Rightarrow x=0\)
\(c,\Rightarrow\left(x-2\right)^2-1=\left(x-2\right)^2\)
\(\Rightarrow-1=0\) (vô lý)
=> PT vô nghiệm
a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2
Do đó VT=VP khi x=2
b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:
\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)
\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)
Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:
\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)
Đối chiếu ĐK của t
\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
\(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\) (ĐKXĐ: \(5\le x\le7\))
Với \(5\le x\le7\) thì VT luôn lớn hơn 0
Áp dụng BĐT (a+b)2\(\le2\left(a^2+b^2\right)\). Dấu "\(=\)" xảy ra \(\Leftrightarrow a=b\) với VT ta có:
\(VT^2=\left(\sqrt{7-x}+\sqrt{x-5}\right)^2\le2\left(7-x+x-5\right)\)
\(\Leftrightarrow VT^2\le2.2=4\)
\(\Leftrightarrow0< VT\le2\) (1)
CÓ : VP\(=x^2-12x+38=\left(x-6\right)^2+2\ge2\forall x\)(2)
(1) và (2)\(\Rightarrow VT=VP=2\)
Dấu"\(=\)" \(\Leftrightarrow\left\{{}\begin{matrix}7-x=x-5\\x-6=0\end{matrix}\right.\Leftrightarrow x=6\left(t/m\right)\)
Kl: x\(=6\) là nghiệm của pt
ĐKXĐ: ...
Ta có:
\(VT=\sqrt{7-x}+\sqrt{x-5}\le\sqrt{2\left(7-x+x-5\right)}=2\)
\(VP=\left(x-6\right)^2+2\ge2\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\sqrt{7-x}=\sqrt{x-5}\\x-6=0\end{matrix}\right.\) \(\Rightarrow x=6\)