\(\sqrt{4-3\sqrt{10-3x}}=x-2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(ĐKXĐ:\dfrac{74}{27}\le x\le\dfrac{10}{3}\)

PT đã cho tương đương với:

\(4-3\sqrt{10-3x}=x^2-4x+4\)

\(\Leftrightarrow x^2-4x+3+3\sqrt{10-3x}-3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)-3\left(1-\sqrt{10-3x}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)-3.\dfrac{3\left(x-3\right)}{1+\sqrt{10-3x}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1-\dfrac{9}{1+\sqrt{10-3x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\left(1\right)\\\left(x-1\right)\left(1+\sqrt{10-3x}\right)=9\left(2\right)\end{matrix}\right.\)

Ta có:

\(pt\left(1\right)\Leftrightarrow x=3\left(tm\right)\)

\(pt\left(2\right):\left(x-1\right)\left(1+\sqrt{10-3x}\right)=9\)

mà \(\left(x-1\right)\left(1+\sqrt{10-3x}\right)\le\dfrac{7}{3}.\dfrac{7}{3}\) nên \(pt\left(2\right)\) vô nghiệm

Vậy pt đã cho có tập nghiệm \(S=\left\{3\right\}\)

 

13 tháng 10 2019

a,đk -1<x<7

x+1+2 căn 7-x-2 căn x+1=căn (x+1)(7-x)

10 tháng 8 2017

\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x27x+33x25x1=x22x23x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
2x+43x27x+3+3x25x1=3x6x22+x23x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

(x2)(3x22+x23x+4+23x27x+3+3x25x1)=0⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23x723≤x≤7

Phương trình đã cho tương đương với:

3x183x2+4+x67x1+(x6)(3x2+x2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

(x6)(33x2+4+17x1+3x2+x2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

x=6⇔x=6

vì với 23x723≤x≤7

thì: (33x2+4+17x1+3x2+x2)(33x−2+4+17−x−1+3x2+x−2)>0

16 tháng 6 2017

mọi người ưi giúp tui giải câu a thui nha tui giải đc câu b ròi làm ơn nhanh giúp thanks nhìu nhìu

\(\sqrt{10\left(x-3\right)}=\sqrt{26}\)

\(\Rightarrow10\left(x-3\right)=26\)

\(\Rightarrow x-3=2.6\)

\(\Rightarrow x=3+2,6=5,6\)

\(\sqrt{3x^2}=x+2\Rightarrow3x^2=x^2+4x+4\)

\(\Rightarrow3x^2-x^2-4x-4=0\)

\(\Rightarrow2x^2-4x-4=0\)

\(\Rightarrow x^2-2x-2=0\)

\(a=1;b=-2;c=-2;b'=-1\)

\(\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(-2\right)=3>0\)

Phương trình có 2 nghiệp phân biệt 

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)+\sqrt{3}}{1}=1+\sqrt{3}\)

\(x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)-\sqrt{3}}{1}=1-\sqrt{3}\)

\(\sqrt{x^2+6x+9}=3x-6\)

\(x^2+6x+9=9x^2-36x+36\)

\(9x^2-x^2-36x-6x+36-9=0\)

\(8x^2-42x+27=0\)

\(a=8;b=-42;c=27;b'=-21\)

\(\Delta'=b'^2-ac=\left(-21\right)^2-8.27=225>0\)

Phương trình có 2 nghiệp phân biệt 

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)+\sqrt{225}}{8}=\frac{21+15}{8}=\frac{36}{8}=\frac{9}{2}\)

\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)-\sqrt{225}}{8}=\frac{21-15}{8}=\frac{6}{8}=\frac{3}{4}\)

18 tháng 10 2020

a) \(\sqrt{2x-1}=\sqrt{5}\)

ĐK : \(x\ge\frac{1}{2}\)

Bình phương hai vế

pt <=> \(2x-1=25\)

    <=> \(2x=26\)

    <=> \(x=13\left(tm\right)\)

Vậy S = { 13 }

b) \(\sqrt{4-5x}=12\)

ĐK : \(x\le\frac{4}{5}\)

Bình phương hai vế

pt <=> \(4-5x=144\)

    <=> \(-5x=140\)

    <=> \(x=-28\left(tm\right)\)

Vậy S = { -28 }

c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]> 

<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)

<=> \(\left|x+3\right|=3x-1\)

<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)

Vậy S = { 2 }

d) \(2\sqrt{x}\le\sqrt{10}\)

ĐK : \(x\ge0\)

Bình phương hai vế

bpt <=> \(4x\le10\)

      <=> \(x\le\frac{10}{4}\)

Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)

18 tháng 10 2020

a) \(ĐKXĐ:x\ge\frac{1}{2}\)

 \(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=3\)

b) \(ĐKXĐ:x\le\frac{4}{5}\)

\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )

\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=-28\)

c) \(ĐKXĐ:x\ge\frac{1}{3}\)

\(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)

thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)

\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)

\(\Leftrightarrow x=\frac{-1}{2}\)(  không thỏa mãn ĐKXĐ )

+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)

thì \(\left|x+3\right|=x+3\)

\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=2\)