Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. đặt \(\sqrt[3]{x+24}=a\) và \(\sqrt{12-x}=b\)(b>=0)
==>ta có hệ pt
\(\int_{a^3+b^2=36}^{a+b=6}\)<=> \(\int_{a^3+\left(6-a\right)^2=36}^{b=6-a}\)<=> \(\int_{b=6-a}^{a^3+a^2-12a=0}\)<=> \(\int_{b=6-a}^{a\left(a^2+a-12\right)=0}\)<=>\(\int_{b=6-a}^{a\left(a+4\right)\left(a-3\right)=0}\)
đến đây bạn tự tìm a;b rufit hay vào tìm x là ok
3. \(\Leftrightarrow\sqrt[3]{2x^2}-\sqrt[3]{x+1}+\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}=0\)
\(\Leftrightarrow\frac{2x^2-x-1}{\sqrt[3]{4x^4}+\sqrt[3]{2x^2\left(x+1\right)}+\sqrt[3]{\left(x+1\right)^2}}+\frac{2x^2-x-1}{\sqrt[3]{\left(2x^2+1\right)^2}+\sqrt[3]{\left(2x^2+1\right)\left(x+2\right)}+\sqrt[3]{\left(x+2\right)^2}}=0\)
\(\Leftrightarrow2x^2-x-1=0\)
( do \(\frac{1}{\sqrt[3]{4x^4}+\sqrt[3]{2x^2\left(x+1\right)}+\sqrt[3]{\left(x+1\right)^2}}+\frac{1}{\sqrt[3]{\left(2x^2+1\right)^2}+\sqrt[3]{\left(2x^2+1\right)\left(x+2\right)}+\sqrt[3]{\left(x+2\right)^2}}>0\forall xTMĐK\))
\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2=\frac{9}{8}\Leftrightarrow\left(x-\frac{1}{4}\right)^2=\frac{9}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{4}=\frac{3}{4}\\x-\frac{1}{4}=-\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\end{matrix}\right.\) ( TM )
1.ĐK: \(x\ge\dfrac{1}{4}\)
bpt\(\Leftrightarrow5x+1+4x-1-2\sqrt{20x^2-x-1}< 9x\)
\(\Leftrightarrow2\sqrt{20x^2-x-1}>0\)
\(\Leftrightarrow20x^2-x-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{-1}{5}\\x>\dfrac{1}{4}\end{matrix}\right.\)
2.ĐK: \(-2\le x\le\dfrac{5}{2}\)
bpt\(\Leftrightarrow x+2+3-x-2\sqrt{-x^2+x+6}< 5-2x\)
\(\Leftrightarrow2x< 2\sqrt{-x^2+x+6}\)
\(\Leftrightarrow x^2< -x^2+x+6\)
\(\Leftrightarrow-2x^2+x+6>0\)
\(\Leftrightarrow\dfrac{-3}{2}< x< 2\)
3. ĐK: \(\left\{{}\begin{matrix}12+x-x^2\ge0\\x\ne11\\x\ne\dfrac{9}{2}\end{matrix}\right.\)
.bpt\(\Leftrightarrow\sqrt{12+x-x^2}\left(\dfrac{1}{x-11}-\dfrac{1}{2x-9}\right)\ge0\)
\(\Leftrightarrow\sqrt{-x^2+x+12}.\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)
\(\Rightarrow\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)
\(\Leftrightarrow\dfrac{x+2}{2x^2-31x+99}\ge0\)
*Xét TH1: \(\left\{{}\begin{matrix}x+2\ge0\\2x^2-31x+99>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x< \dfrac{9}{2}\\x>11\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2\le x< \dfrac{9}{2}\\x>11\end{matrix}\right.\)
*Xét TH2: \(\left\{{}\begin{matrix}x+2\le0\\2x^2-31x+99< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-2\\\dfrac{9}{2}< x< 11\end{matrix}\right.\)\(\Rightarrow\dfrac{9}{2}< x< 11\)
ĐK: \(-24\le x\le12\)
Đặt : \(\left\{{}\begin{matrix}a=\sqrt[3]{x+24}\\b=\sqrt{12-x}\end{matrix}\right.\Rightarrow a^3+b^2=36}\)Từ cách đặt => pt trở thành a+b=6
=> Hệ :\(\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-6\\a^3+a^2-12a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-6\\a\left(a^2+a-12\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-6\\\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\end{matrix}\right.\)Xong tìm ra b => thay vào cách đặt tìm ra x,y
a/ ĐKXĐ: ...
\(\Leftrightarrow x+8+\sqrt{x+8}-\left(x+8\right)=\sqrt{x}+\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{x+8}=\sqrt{x}+\sqrt{x+3}\)
\(\Leftrightarrow x+8=2x+3+2\sqrt{x^2+3x}\)
\(\Leftrightarrow5-x=2\sqrt{x^2+3x}\) (\(x\le5\))
\(\Leftrightarrow x^2-10x+25=4\left(x^2+3x\right)\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: \(2\le x\le5\)
\(\Leftrightarrow2\left(x-2\right)+\sqrt{2\left(x-2\right)}\left(\sqrt{5-x}-\sqrt{3x-3}\right)=0\)
\(\Leftrightarrow\sqrt{2\left(x-2\right)}\left(\sqrt{2x-4}+\sqrt{5-x}-\sqrt{3x-3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\sqrt{2x-4}+\sqrt{5-x}=\sqrt{3x-3}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}=3x-3\)
\(\Leftrightarrow\sqrt{\left(2x-4\right)\left(5-x\right)}=x-2\)
\(\Leftrightarrow\left(2x-4\right)\left(5-x\right)=\left(x-2\right)^2\)
\(\Leftrightarrow...\)
c/ ĐKXĐ: \(x\le12\)
\(\Leftrightarrow\sqrt[3]{24+x}\sqrt{12-x}-6\sqrt{12-x}+12-x=0\)
\(\Leftrightarrow\sqrt{12-x}\left(\sqrt[3]{24+x}-6+\sqrt{12-x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\\\sqrt[3]{24+x}+\sqrt{12-x}=6\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\a^3+b^2=36\end{matrix}\right.\)
\(\Leftrightarrow a^3+\left(6-a\right)^2=36\)
\(\Leftrightarrow a^3+a^2-12a=0\)
\(\Leftrightarrow a\left(a^2+a-12\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{24+x}=0\\\sqrt[3]{24+x}=3\\\sqrt[3]{24+x}=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}24+x=0\\24+x=27\\24+x=-64\end{matrix}\right.\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\\frac{1}{\sqrt{2x-3}+\sqrt{x}}=2\left(1\right)\end{cases}}\)
Xét (1), ta có \(x\ge\frac{3}{2}\Rightarrow\sqrt{x}>1\Rightarrow\sqrt{2x-3}+\sqrt{x}>1\)
\(\Rightarrow VT< 1\Rightarrow\left(1\right)\) vô nghiệm
Vậy pt có nghiệm duy nhất \(x=3\)
ĐKXĐ: x – 6 ≥ 0 ⇔ x > 6. Bình phương hai vế thì được 5x + 6 = (x – 6)2 ⇔ x2 = 2 (loại), x2 = 15 (nhận).
b) ĐKXĐ: – 2 ≤ x ≤ 3. Bình phương hai vế thì được 3 - x = x + 3 + 2
⇔ -2x = 2.
Điều kiện x ≤ 0. Bình phương tiếp ta được:
x2 = x + 2 => x1 = -1 (nhận); x2 = 2 (loại).
Kết luận: Tập nghiệm S {-1}.
c) ĐKXĐ: x ≥ -2.
=> 2x2 + 5 = (x + 2)2 => x2 - 4x + 1 = 0
=> x1 =2 – (nhận), x2 = 2 + (nhận).
d) ĐK: x ≥ .
=> 4x2 + 2x + 10 = (3x + 1)2 => x1 = (loại), x2 = 1 (nhận).
a, ĐK x\(\ge5\) Đặt \(\sqrt{x-5}=y\Rightarrow x=y^2+5\)
Phương tình đã cho trở thành:\(y^2+5+y=y+6\)
\(\Leftrightarrow y^2-1=0\)
\(\Leftrightarrow y=-1;y=1\)
y=-1 loại vì \(\sqrt{x=5}\ge0\)
Ta có \(y=1\Rightarrow\sqrt{x-5}=1\Leftrightarrow x=6\)
b,làm tương tự câu a
c,ĐK:\(x\ge2\) Phương trình đã cho tương đương:\(\dfrac{x^2-8}{\sqrt{x-2}}=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=2\sqrt{2}\\x_2=-2\sqrt{2}\left(l\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=2\sqrt{2}\).
b) Đkxđ: \(\left\{{}\begin{matrix}1-x\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x=1\).
Thay x = 1 vào phương trình ta có:
\(\sqrt{1-1}+1=\sqrt{1-1}+2\)\(\Leftrightarrow1=2\) (vô lý).
Vậy phương trình vô nghiệm.
Mình bt làm rồi ạ !