![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\sqrt{x^2+2x-5}\)= \(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))
\(\Leftrightarrow x^2+2x-5=2x-1\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)
#mã mã#
b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)
\(\Leftrightarrow x\left(x^3-3x+1\right)\)= \(x\left(x^3-1\right)\)
\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0
\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0
\(\Leftrightarrow\)x( 2-3x ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)
vậy pt vô nghiệm
#mã mã#
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
ĐKĐB: \(\left\{\begin{matrix} 2x-1\geq 0\\ x^2+2x-5\geq 0\end{matrix}\right.\)
PT \(\Leftrightarrow 2x-1=x^2+2x-5\) (bình phương 2 vế)
\(\Leftrightarrow x^2-4=0\Leftrightarrow (x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-2\end{matrix}\right.\)
Thử lại vào ĐKĐB suy ra $x=2$ là nghiệm duy nhất.
b)
ĐKĐB: \( \left\{\begin{matrix} x(x^3-3x+1)\geq 0\\ x(x^3-x)\geq 0\end{matrix}\right.\)
PT \(\Leftrightarrow x(x^3-3x+1)=x(x^3-x)\) (bình phương)
\(\Leftrightarrow x(x^3-3x+1-x^3+x)=0\)
\(\Leftrightarrow x(1-2x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1}{2}\end{matrix}\right.\)
Thử lại vào ĐKĐB thấy $x=0$ là nghiệm duy nhất
e)
ĐKXĐ: \(x\geq \frac{5}{3}\)
PT \(\Rightarrow (\sqrt{x+2}-\sqrt{2x-3})^2=3x-5\) (bình phương 2 vế)
\(\Leftrightarrow 3x-1-2\sqrt{(x+2)(2x-3)}=3x-5\)
\(\Leftrightarrow 2=\sqrt{(x+2)(2x-3)}\)
\(\Leftrightarrow 4=(x+2)(2x-3)\)
\(\Leftrightarrow 2x^2+x-10=0\)
\(\Leftrightarrow (x-2)(2x+5)=0\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-5}{2}\end{matrix}\right.\)
Kết hợp với ĐKXĐ suy ra $x=2$
f) Bạn xem lại đề.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(\sqrt{1-x}\) xác định với \(x\le1,\sqrt{x-2}\) xác định với \(x\ge2\)
Không có giá trị nào của x nghiệm đúng phương trình.
Do đó phương trình vô nghiệm.
b) ĐKXĐ \(x\le3\)
\(\sqrt{3-x}+x=\sqrt{3-x}+1\)<=> x = 1.
Tậm nghiệm S = {1}
+) thay x = -1 vào phương trình ta được: \(\sqrt[3]{-2}=\sqrt[3]{-2}\) => x = -1 là nghiệm của phương trình
+) x > - 1 => \(\sqrt[3]{x+1}>0\)
Ta có 3x + 1 > x - 1 => \(\sqrt[3]{3x+1}>\sqrt[3]{x-1}\)
=> \(\sqrt[3]{x+1}+\sqrt[3]{3x+1}>0+\sqrt[3]{x-1}=\sqrt[3]{x-1}\)
=> x > -1 không là nghiệm của pt
+) x < -1 => x+ 1 < 0 => \(\sqrt[3]{x+1}<0\)
x < - 1 => 2x < - 2 => 3x + 1 < x - 1 => \(\sqrt[3]{3x+1}<\sqrt[3]{x-1}\)
=> \(\sqrt[3]{x+1}+\sqrt[3]{3x+1}<0+\sqrt[3]{x-1}=\sqrt[3]{x-1}\)
=> x < -1 không là nghiệm của pt đã cho
Vậy x = -1 là nghiệm duy nhất của phương trình
Cho a3 = x+1
Vậy 3x + 3 = 3a3
=> 3x+3 - 2 = 3 x a3 - 2
=> 3x +1 = 3a3 - 2
=> a3 - 2 = x+1 - 2 = x-1
Phương trình tương đương: a3 + 3a3 - 2 = a3 -2
4a3 -2 = a3 -2
=> 3a3 = 0
=> a=0
=> x+1 = a3 = 0
3x +1 = 3a3 -2 = -2
x-1= a3 -2 = -2
=> x = -1