Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)(ĐK:\(x>\frac{1}{2}\))
\(\Leftrightarrow x^2+2x+2x-1+2\sqrt{\left(x^2+2x\right)\left(2x-1\right)}=3x^2+4x+1\)(BP 2 vế)
\(\Leftrightarrow2\sqrt{2x^3-x^2+4x^2-2x}=2x^2+2\)
\(\Leftrightarrow\sqrt{2x^3+2x+3x^2+3-4x-3}=x^2+1\)
Đặt \(x^2+1=t\)
pt\(\Leftrightarrow\sqrt{2xt+3t-\left(4x+3\right)}=t\)
\(\Leftrightarrow2xt+3t-4x-3=t^2\)
\(\Leftrightarrow t^2-t\left(2x+3\right)+4x+3=0\)
\(\Delta=\left(2x+3\right)^2-4.\left(4x+3\right)=4x^2+12x+9-16x-12=4x^2-4x-3\)
\(\hept{\begin{cases}t_1=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\\t_2=\frac{2x+3+\sqrt{4x^2-4x-3}}{2}\end{cases}}\)
TH1:\(t=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\)
\(\Rightarrow2x^2+2=2x+3-\sqrt{4x^2-4x-3}\)
\(\Leftrightarrow2x^2+2=2x+3-\sqrt{4x^2+4x-8x-3}\)
\(\Leftrightarrow2t=2x+3-\sqrt{4t-8x-3}\)
Giải ra rồi thay TH2
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
<=> \(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
<=> (\(\sqrt{x-1}-1\))(\(\sqrt{x-2}-\sqrt{x+3}\)) = 0
<=> \(\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{cases}}\)
<=> x = 2
\(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)
\(\Leftrightarrow\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)
\(\Leftrightarrow x+3+4x-4\sqrt{x+3}.\sqrt{x}=2x+2+3x+1-2\sqrt{2x+2}.\sqrt{3x+1}\)
\(\Leftrightarrow2\sqrt{x+3}.\sqrt{x}=\sqrt{2x+2}.\sqrt{3x+1}\)
\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)
\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)
\(\Leftrightarrow x=1\)
Bổ sung tiếp bài của dưới
\(4\left(x^2+3x\right)-6x^2-8x-2=0\)
\(\Rightarrow4x^2-12x-6x^2-8x-2=0\)
\(\Rightarrow-2x^2+4x-2=\left(-2\right)\left(x^2-2x+1\right)=0\)
\(\Rightarrow-2\left(x-1\right)^2=0\Leftrightarrow x=1\)
a, dk \(x\ge0\)
ap dung bdt cosi ta co
\(\sqrt{x+3}+\frac{4x}{\sqrt{x+3}}\ge2\sqrt{4x}=4\sqrt{x}\)
dau = xay ra \(\Leftrightarrow\sqrt{x+3}=\frac{4x}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Rightarrow x=1\)(tm dk)
kl x=1 la no cua pt
a)\(2x^2+x+3=3x\sqrt{x+3}\)
ĐK:\(x\ge-3\)
\(pt\Leftrightarrow2x^2+x-3=3x\sqrt{x+3}-6\)
\(\Leftrightarrow2x^2+x-3=\frac{9x^2\left(x+3\right)-36}{3x\sqrt{x+3}+6}\)
\(\Leftrightarrow2x^2+x-3-\frac{9x^3+27x^2-36}{3x\sqrt{x+3}+6}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)-\frac{9\left(x-1\right)\left(x+2\right)^2}{3x\sqrt{x+3}+6}=0\)
\(\Leftrightarrow\left(x-1\right)\left[2x+3-\frac{9\left(x+2\right)^2}{3x\sqrt{x+3}+6}\right]=0\)
.....................
b) sai đề hay vô nghiệm nhỉ
1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v
pt(1)\(\Leftrightarrow\left(\sqrt{2x^2+x+1}-2x\right)+\left(\sqrt{x^2-x+1}-x\right)=0\left(đk;x\ge0\right)\)
\(\Leftrightarrow\frac{-2x^2+x+1}{\sqrt{2x^2+x+1}+2x}+\frac{-x+1}{\sqrt{x^2-x+1}+x}=0\)
\(\Leftrightarrow\frac{\left(2x+1\right)\left(x-1\right)}{\sqrt{2x^2+x+1}+2x}+\frac{x-1}{\sqrt{x^2-x+1}+x}=0\)
\(\Leftrightarrow x=1\)
ĐK x > \(\frac{2}{3}\)
\(\Leftrightarrow\left(\sqrt{3x-2}\right)^2=\left(x^2-2x+2\right)^2\)
\(\Leftrightarrow3x-2=x^4-4x^3+4x^2+4x^2-8x+4\)\(\Leftrightarrow x^4-4x^3+8x^2-11x+6=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2+5x^2-5x-6x+6=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+5x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+5x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x^3-3x^2+5x-6=0\end{cases}}\)\(\hept{\left(1;2\right)}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\\left(x-2\right)\left(x^2-x+3\right)=0\end{cases}}\)
Vậy x=1,x=2
\(\orbr{\begin{cases}x=1\\\orbr{\begin{cases}x=2\\x^2-x+3=0\end{cases}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\\orbr{\begin{cases}x=2\left(tm\right)\\x^2-x+3=0\left(loai\right)\end{cases}}\end{cases}}\)
\(\sqrt{3x-2}=x^2-2x+2\left(x\ge\frac{2}{3}\right)\)
\(\Leftrightarrow\sqrt{3x-2}-2-x^2+2x=0\)
\(\Leftrightarrow\frac{3x-6}{\sqrt{3x-2}+2}-x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{3}{\sqrt{3x-2}+2}-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\frac{3}{\sqrt{3x-2}+2}=x\left(1\right)\end{cases}}\)
\(\left(1\right)\Rightarrow x\sqrt{3x-2}+2x=3\)
\(\Leftrightarrow x\sqrt{3x-2}=3-2x\left(x\le\frac{3}{2}\right)\)
\(\Leftrightarrow x^2\left(3x-2\right)=9+4x^2-12x\)
\(\Leftrightarrow3x^3-2x^2=9+4x^2-12x\)
\(\Leftrightarrow3x^3-6x^2+12x-9=0\)
\(\Leftrightarrow x^3-2x^2+4x-3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x^2-x+3=0\left(2\right)\end{cases}}\)
\(\Delta_{\left(2\right)=1^2-3.4=-11< 0}\)( vô nghiệm )
Vậy pt có tập nghiệm \(S=\left\{1;2\right\}\)