Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow 27\sqrt[3]{81x-8}=27x^3-54x^2+36x-54$
$\Leftrightarrow 27\sqrt[3]{81x-8}=(3x-2)^3-46$
Đặt $\sqrt[3]{81x-8}=a; 3x-2=b$. Khi đó:
\(\left\{\begin{matrix} a^3-27b=46\\ 27a=b^3-46\end{matrix}\right.\) $\Rightarrow 27a=b^3-(a^3-27b)$
$\Leftrightarrow a^3-b^3+27a-27b=0$
$\Leftrightarrow (a-b)(a^2+ab+b^2+27)=0$
Dễ thấy $a^2+ab+b^2+27>0$ với mọi $a,b\in\mathbb{R}$
Do đó $a-b=0\Rightarrow a=b$
$\Leftrightarrow 81x-8=(3x-2)^3$
$\Leftrightarrow 27x^3-54x^2-45x=0$
$\Rightarrow x=0; x=\frac{3\pm 2\sqrt{6}}{3}$
Vậy.......
\(\sqrt[3]{{81x - 8}} = {x^3} - 2{x^2} + \dfrac{4}{3}x - 2\left( 1 \right)\)
\(\left( 1 \right) \Leftrightarrow 27{x^3} - 54{x^2} + 36x - 54 = 27\sqrt[3]{{81x - 8}} \)
Đặt \(y=\sqrt[3]{81x-8}\Leftrightarrow y^3=81x-8\)
Vậy ta có hệ phương trình \(\left\{{}\begin{matrix}27x^3-54x^2+36x-54=27y\\81x-8=y^3\end{matrix}\right.\Rightarrow\left(3x-2\right)^3+27\left(3x-2\right)=y^3+y\left(2\right)\)
Xét hàm số \(f(t)=t^3+t(t \in \mathbb{R})\)
Đạo hàm \(f'\left(t\right)=3t^2+1>0;\forall t\in\) \(\mathbb{R}\)
Vậy hàm số trên đồng biến trên \(\mathbb{R}\)
\(\left(2\right)\Leftrightarrow f\left(3x-2\right)=f\left(y\right)\\ \Leftrightarrow3x-2=y\\ \Leftrightarrow3x-2=\sqrt[3]{81x-8}\\ \Leftrightarrow27x^3-54x^2-45x=0\)
\(\Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{{3 \pm 2\sqrt 6 }}{3} \end{array} \right.\)
Vậy phương trình có tập nghiệm: \(T = \left\{ {0;\dfrac{{3 \pm 2\sqrt 6 }}{3}} \right\}\)
\(\Leftrightarrow\frac{7x+4}{\sqrt{2\left(x-1\right)\left(x+1\right)}}+\frac{2\sqrt{2x+1}}{\sqrt{2\left(x+1\right)}}=3+\frac{3\sqrt{2x+1}}{\sqrt{x-1}}\)
\(\Leftrightarrow7x+4+2\sqrt{\left(2x+1\right)\left(x-1\right)}=3\sqrt{2\left(x-1\right)\left(x+1\right)}+3\sqrt{2\left(2x+1\right)\left(x+1\right)}\)
\(\Leftrightarrow\left(7x+4+\sqrt{8x^2-4x-4}\right)^2=\left(\sqrt{18x^2-18}+\sqrt{36^2+54x+18}\right)^2\)
\(\Leftrightarrow\left(7x+4\right)^2+8x^2-4x-4+2\left(7x+4\right)\sqrt{8x^2-4x-4}\)\(=18x^2-18+36x^2+54x+18+2\sqrt{\left(18x^2-18\right)\left(36x^2+54x+18\right)}\)
\(\Leftrightarrow3x^2-2x+12+4\left(7x+4\right)\sqrt{\left(x-1\right)\left(2x+1\right)}=36\left(x+1\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow3x^2-2x+12=4\left(2x+5\right)\sqrt{\left(x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow\left(3x^2-2x+12\right)^2=16\left(2x+5\right)^2\left(x-1\right)\left(2x+1\right)\)
\(\Leftrightarrow119x^4+588x^3+1940x^2-672x-544=0\left(1\right)\)
Ta thấy x>1 => Vế trái (1) \(>119.1^4+588.1^3+1940.1^2-672.1-544=1431>0\)
=> pt vô nghiệm.
Điều kiện : \(\begin{cases}x\ge\frac{1}{3}\\3x\in N\end{cases}\)
Từ phương trình ban đầu \(\Leftrightarrow\sqrt{2^x.2^{2.\frac{x}{3}}.\left(\frac{1}{8}\right)^{\frac{1}{3x}}}=2^2.2^{\frac{1}{3}}\)
\(\Leftrightarrow2^{\frac{x}{2}}.2^{\frac{x}{3}}.2^{\frac{-1}{2x}}=2^{\frac{7}{3}}\)
\(\Leftrightarrow2^{\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}}=2^{\frac{7}{3}}\)
\(\Leftrightarrow\frac{x}{2}+\frac{x}{3}-\frac{1}{2x}=\frac{7}{3}\)
\(\Leftrightarrow5x^2-14x-3=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=-\frac{1}{5}\end{array}\right.\)
Kết hợp với điều kiện ta có \(x=3\) là nghiệm của phương trình
Bất phương trình : \(\Leftrightarrow2^{\frac{x+1}{2}}.2^{\frac{4x-2}{3}}.2^{9-3x}>2^{\frac{3}{2}}.2^{-3}\)
\(\Leftrightarrow2^{\frac{x+1}{2}+\frac{4x-2}{3}+9-3x}>2^{\frac{3}{2}-3}\)
\(\Leftrightarrow x< \frac{62}{7}\)
Vậy bất phương trình có tập nghiệm là \(S=\left(-\infty;\frac{62}{7}\right)\)
a/ ĐKXĐ: ...
\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)
\(\Rightarrow x+\frac{1}{4x}=a^2-1\)
Pt trở thành:
\(3a=2\left(a^2-1\right)-7\)
\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)
\(\Leftrightarrow2x-6\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)
b/ ĐKXĐ:
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)
\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
d/ ĐKXĐ: ...
\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)
\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)
\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)
\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)
\(\Leftrightarrow4x^2-17x+4=0\)
\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)
do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương
\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)
TH(1) x<3 <=>3-x>5-2x=> x>2
Kết luận(1) \(2< x< 3\)
TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)
Kết luận(2) \(x\ge3\)
(1)và(2) nghiệm của Bpt là: x>2
8.
ĐKXĐ: \(x\ge\frac{2}{3}\)
\(\Leftrightarrow\frac{9\left(x+3\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\frac{9}{\sqrt{4x+1}+\sqrt{3x-2}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=9\)
\(\Leftrightarrow\sqrt{4x+1}-5+\sqrt{3x-2}-4=0\)
\(\Leftrightarrow\frac{4\left(x-6\right)}{\sqrt{4x+1}+5}+\frac{3\left(x-6\right)}{\sqrt{3x-2}+4}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{4}{\sqrt{4x+1}+5}+\frac{3}{\sqrt{3x-2}+4}\right)=0\)
\(\Leftrightarrow x=6\)
6.
ĐKXD: ...
\(\Leftrightarrow2\left(x^2-6x+9\right)+\left(x+5-4\sqrt{x+1}\right)=0\)
\(\Leftrightarrow2\left(x-3\right)^2+\frac{\left(x-3\right)^2}{x+5+4\sqrt{x+1}}=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(2+\frac{1}{x+5+4\sqrt{x+1}}\right)=0\)
\(\Leftrightarrow x=3\)
7.
\(\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}+\frac{4}{x}-x=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-\frac{1}{x}}=a\ge0\\\sqrt{2x-\frac{5}{x}}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=\frac{4}{x}-x\)
\(\Rightarrow a-b+a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow x-\frac{1}{x}=2x-\frac{5}{x}\)
\(\Leftrightarrow x=\frac{4}{x}\Rightarrow x=\pm2\)
Thế nghiệm lại pt ban đầu để thử (hoặc là bạn tìm ĐKXĐ từ đầu)
Đặt \(\sqrt[3]{81x-8}=3y-2\)
\(\Leftrightarrow81x-8=27y^3-54y^2+36y-8\)
\(\Leftrightarrow27y^3-54y^2+36y=81x\)
\(\Leftrightarrow3y^3-6y^2+4y=9x\)
Phương trình đã cho tương đương:
\(3\sqrt[3]{81x-8}=3x^3-6x^2+4x-6\)
\(\Leftrightarrow3\left(3y-2\right)=3x^3-6x^2+4x-6\)
\(\Leftrightarrow3x^3-6x^2+4x=9y\)
Ta có hệ phương trình \(\left\{{}\begin{matrix}3y^3-6y^2+4y=9x\left(1\right)\\3x^3-6x^2+4x=9y\left(2\right)\end{matrix}\right.\)
Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được
\(3\left(y^3-x^3\right)-6\left(y^2-x^2\right)+4\left(y-x\right)=9\left(x-y\right)\)
\(\Leftrightarrow3\left(y-x\right)\left(y^2+x^2+xy\right)-6\left(y-x\right)\left(x+y\right)+13\left(y-x\right)=0\)
\(\Leftrightarrow\left(3y^2+3x^2+3xy-6x-6y+13\right)\left(y-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3y^2+3x^2+3xy-6x-6y+13=0\left(3\right)\\y-x=0\end{matrix}\right.\)
Phương trình \(3y^2+3y\left(x-2\right)+3x^2-6x+13=0\)
\(\Delta=9\left(x-2\right)^2-12\left(3x^2-6x+13\right)=-27x^2+36x-120< 0\)
\(\Rightarrow\) Phương trình \(\left(3\right)\) vô nghiệm
\(\Rightarrow y=x\)
Khi đó \(\sqrt[3]{81x-8}=3x-2\)
\(\Leftrightarrow27x^3-54x^2-33x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{3\pm2\sqrt{5}}{3}\end{matrix}\right.\)
Anh ơi làm sao để chọn ẩn phụ 3y - 2 mà không chọn cái khác ạ?