\(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}=x+5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 1 2022

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+5x+12}=a>0\\\sqrt{2x^2+3x+2}=b>0\end{matrix}\right.\) \(\Rightarrow x+5=\dfrac{a^2-b^2}{2}\)

Phương trình trở thành:

\(a+b=\dfrac{a^2-b^2}{2}\)

\(\Leftrightarrow\left(a-b-2\right)\left(a+b\right)=0\)

\(\Leftrightarrow a-b-2=0\) (do \(a+b>0\))

\(\Leftrightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+5x+12}=\sqrt{2x^2+3x+2}+2\)

\(\Leftrightarrow2x^2+5x+12=2x^2+3x+6+4\sqrt{2x^2+3x+2}\)

\(\Leftrightarrow x+3=2\sqrt{2x^2+3x+2}\) (\(x\ge-3\))

\(\Leftrightarrow x^2+6x+9=4\left(2x^2+3x+2\right)\)

\(\Leftrightarrow7x^2+6x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)

22 tháng 1 2022

cảm ơn Thầy nhiều ạ

10 tháng 8 2020

1. \(2-\sqrt{\left(3x+1\right)^2}=35\)

<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm

2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)

<=> \(\left|1-2x\right|=12-5\)

<=> \(\left|1-2x\right|=7\)

<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vậy S = {-3; 4}

10 tháng 8 2020

3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)

\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)

=> pt vô nghiệm

4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5

Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)

<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)

<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)

<=> \(\frac{5x+7}{x+3}=16\)

=> \(5x+7=16\left(x+3\right)\)

<=> \(5x+7=16x+48\)

<=> \(5x-16x=48-7\)

<=> \(-11x=41\)

<=> \(x=-\frac{41}{11}\)ktm

=> pt vô nghiệm

9 tháng 11 2017

bạn sử dụng : \(\sqrt{x}\)= a <=>  a > hoặc bằng 0 

                                               và x= a^2

a: \(\Leftrightarrow2\sqrt{3x}+12-4x+5\sqrt{3}=0\)

\(\Leftrightarrow-4x+2\sqrt{3}\cdot\sqrt{x}+12+5\sqrt{3}=0\)

Đặt \(\sqrt{x}=a\left(a>=0\right)\)

Phương trình trở thành \(-4a^2+2\sqrt{3}a+12+5\sqrt{3}=0\)

\(\Delta=\left(2\sqrt{3}\right)^2-4\cdot\left(-4\right)\cdot\left(12+5\sqrt{3}\right)\)

\(=12+16\left(12+5\sqrt{3}\right)\)

\(=12+192+80\sqrt{3}=204+80\sqrt{3}\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}a_1=\dfrac{-2\sqrt{3}-\sqrt{204+80\sqrt{3}}}{-8}=\dfrac{2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{8}\left(nhận\right)\\a_2=\dfrac{-2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{-8}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow a=\dfrac{2\sqrt{3}+2\sqrt{26+20\sqrt{3}}}{8}=\dfrac{\sqrt{3}+\sqrt{26+20\sqrt{3}}}{4}\)

\(\Leftrightarrow x=a^2\simeq5,66\)

c: \(\Leftrightarrow x\sqrt{2}+5\sqrt{2}-4x-5-4\sqrt{2}=0\)

\(\Leftrightarrow x\left(\sqrt{2}-4\right)+\sqrt{2}-5=0\)

\(\Leftrightarrow x=\dfrac{5-\sqrt{2}}{\sqrt{2}-4}=\dfrac{-18-\sqrt{2}}{14}\)

d: \(\Leftrightarrow\dfrac{7x+1-4x-4002}{2001}=\dfrac{3x+2}{2003}-1\)

\(\Leftrightarrow3x-4001=0\)

hay x=4001/3

a, \(\sqrt{x^2+2x-5}\)\(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+2x-5=2x-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

#mã mã#

b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)

\(\Leftrightarrow x\left(x^3-3x+1\right)\)\(x\left(x^3-1\right)\)

\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0

\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0

\(\Leftrightarrow\)x( 2-3x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)

vậy pt vô nghiệm

#mã mã#

28 tháng 1 2019

PT \(\Leftrightarrow2x^2+\sqrt{2-x}=2x^2.\sqrt{2-x}\)

Đặt \(2x^2=a;\sqrt{2-x}=b\left(a,b\ge0\right)\)

Phương trình trở thành: \(a+b=ab\Leftrightarrow a-ab+b=0\)

Tới đây bí :v

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

a)

ĐKĐB: \(\left\{\begin{matrix} 2x-1\geq 0\\ x^2+2x-5\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow 2x-1=x^2+2x-5\) (bình phương 2 vế)

\(\Leftrightarrow x^2-4=0\Leftrightarrow (x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-2\end{matrix}\right.\)

Thử lại vào ĐKĐB suy ra $x=2$ là nghiệm duy nhất.

b)

ĐKĐB: \( \left\{\begin{matrix} x(x^3-3x+1)\geq 0\\ x(x^3-x)\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow x(x^3-3x+1)=x(x^3-x)\) (bình phương)

\(\Leftrightarrow x(x^3-3x+1-x^3+x)=0\)

\(\Leftrightarrow x(1-2x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1}{2}\end{matrix}\right.\)

Thử lại vào ĐKĐB thấy $x=0$ là nghiệm duy nhất

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

e)

ĐKXĐ: \(x\geq \frac{5}{3}\)

PT \(\Rightarrow (\sqrt{x+2}-\sqrt{2x-3})^2=3x-5\) (bình phương 2 vế)

\(\Leftrightarrow 3x-1-2\sqrt{(x+2)(2x-3)}=3x-5\)

\(\Leftrightarrow 2=\sqrt{(x+2)(2x-3)}\)

\(\Leftrightarrow 4=(x+2)(2x-3)\)

\(\Leftrightarrow 2x^2+x-10=0\)

\(\Leftrightarrow (x-2)(2x+5)=0\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-5}{2}\end{matrix}\right.\)

Kết hợp với ĐKXĐ suy ra $x=2$

f) Bạn xem lại đề.

26 tháng 7 2018

kuchiyose edo tensen 

26 tháng 7 2018

Thiên Đạo Pain bạn viết gì vậy ?????