Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x – 6 ≥ 0 ⇔ x > 6. Bình phương hai vế thì được 5x + 6 = (x – 6)2 ⇔ x2 = 2 (loại), x2 = 15 (nhận).
b) ĐKXĐ: – 2 ≤ x ≤ 3. Bình phương hai vế thì được 3 - x = x + 3 + 2
⇔ -2x = 2.
Điều kiện x ≤ 0. Bình phương tiếp ta được:
x2 = x + 2 => x1 = -1 (nhận); x2 = 2 (loại).
Kết luận: Tập nghiệm S {-1}.
c) ĐKXĐ: x ≥ -2.
=> 2x2 + 5 = (x + 2)2 => x2 - 4x + 1 = 0
=> x1 =2 – (nhận), x2 = 2 + (nhận).
d) ĐK: x ≥ .
=> 4x2 + 2x + 10 = (3x + 1)2 => x1 = (loại), x2 = 1 (nhận).
a)
Pt\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=\left(x-3\right)^2\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-4=x^2-6x+9\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+13=0\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{29}}{2}\\x_2=\dfrac{9-\sqrt{29}}{2}\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{9+\sqrt{29}}{2}\)
Vậy \(x=\dfrac{9+\sqrt{29}}{2}\) là nghiệm của phương trình.
b) Pt \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+3=\left(2x-1\right)^2\\2x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-2=0\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{7}}{3}\\x_2=\dfrac{1-\sqrt{7}}{3}\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{7}}{3}\)
Vậy phương trình có duy nhất nghiệm là: \(x=\dfrac{1+\sqrt{7}}{3}\)
\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)
do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương
\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)
TH(1) x<3 <=>3-x>5-2x=> x>2
Kết luận(1) \(2< x< 3\)
TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)
Kết luận(2) \(x\ge3\)
(1)và(2) nghiệm của Bpt là: x>2
*Với x\(\ge\)2 PT trở thành: x.(x-2)+(2x+5)=8
<=>x2-2x+2x+5=8
<=>x2=3
<=>\(x=\sqrt{3}\left(loại\right)\text{ hoặc }x=-\sqrt{3}\left(loại\right)\)
*Với \(-\frac{5}{2}\le x<2\) PT trở thành: x.(2-x)+(2x+5)=8
<=>2x-x2+2x+5=8
<=>-x2+4x-3=0
<=>-x2+3x+x-3=0
<=>-x.(x-3)+(x-3)=0
<=>(x-3)(1-x)=0
<=>x=3 (loại) hoặc x=1
*Với x<-5/2 PT trở thành: x.(2-x)-(2x+5)=8
<=>2x-x2-2x-5=8
<=>x2=-13 (vô lí)
Vậy S={1}
\(\sqrt{x+1}=5-\sqrt{2x+3}\)
ĐK: x\(\ge\)1
\(\sqrt{x+1}=5-\sqrt{2x+3}\Leftrightarrow\sqrt{2x+3}=5-\sqrt{x+1}\)
\(\Leftrightarrow2x+3=25-2\sqrt{x+1}+x+1\Leftrightarrow x-23=-2\sqrt{x+1}\)
\(\Leftrightarrow x^2-46x+529=4x+4\Leftrightarrow x^2-50+525\)
\(\Delta=400\Rightarrow\sqrt{\Delta}=20\)
\(\Delta>0,PT\text{ có 2 nghiệm pb: }x_1=35;x_2=15\)
Vậy S={15;35}
ĐKXĐ: ...
\(\Leftrightarrow\frac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\\frac{1}{\sqrt{2x-3}+\sqrt{x}}=2\left(1\right)\end{cases}}\)
Xét (1), ta có \(x\ge\frac{3}{2}\Rightarrow\sqrt{x}>1\Rightarrow\sqrt{2x-3}+\sqrt{x}>1\)
\(\Rightarrow VT< 1\Rightarrow\left(1\right)\) vô nghiệm
Vậy pt có nghiệm duy nhất \(x=3\)