\(\sqrt{2020-x}+\sqrt{x-2018}=x^2-4038x+4076363\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 7 2020

ĐKXĐ: ...

\(VT\le\sqrt{2\left(2020-x+x-2018\right)}=2\)

\(VP=\left(x-2019\right)^2+2\ge2\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}2020-x=x-2018\\x-2019=0\end{matrix}\right.\) \(\Rightarrow x=2019\)

3 tháng 1 2018

Xét :\(VT^2=2020-x+x-2018+2\sqrt{\left(2012-x\right)\left(x-2018\right)}\)

\(=2+2\sqrt{\left(2012-x\right)\left(x-2018\right)}\)

Áp dụng bđt AM - GM ta có : \(2\sqrt{\left(2012-x\right)\left(x-2018\right)}\le2012-x+x-2018=2\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)(1)

Xét \(VP=x^2-4038x+4076363=\left(x^2-4038x+4076361\right)+2\)

\(=\left(x-2019\right)^2+2\ge2\) (2)

Từ (1);(2) \(\Rightarrow VT\le2\le VP\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2020-x=x-2018\\\left(x-2019\right)^2=0\end{cases}\Rightarrow x=2019\left(TM\right)}\)

Vậy nghiệm của PT là \(S=\left\{2019\right\}\)

16 tháng 4 2018

Pttđ: \(x^2-x-1=2018\left(\sqrt{x^2+x+2}-\sqrt{2x^2+1}\right)\)(1)
Đặt \(\sqrt{2x^2+1}=a;\sqrt{x^2+x+2}=b\Rightarrow x^2-x-1=a^2-b^2\)
(1) <=> a2-b2=2018(b-a)
<=>(a-b)(a+b)=-2018(a-b)
<=>a=b hoặc a+b=-2018
Tự giải tiếp nha
 

16 tháng 10 2017

từ a+b=3 => b=3-a

mặt khác: \(a^3-b^2=-3\)

=>\(a^3-\left(3-a\right)^2+3=0\)

\(\Rightarrow a^3-9+6a-a^2+3=0\)

\(\Rightarrow a^3-a^2+6a-6=0\)

\(\Rightarrow a^2\left(a-1\right)+6\left(a-1\right)=0\)

\(\Rightarrow\left(a^2+6\right)\left(a-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}a^2+6=0\\a-1=0\end{cases}\Rightarrow\hept{\begin{cases}a^2=-6\\a=1\end{cases}}}\)

=>a=1 vì \(a^2\ge0\)

=>\(\sqrt[3]{x-2}=1\)

\(\Rightarrow x-2=1\Rightarrow x=3\)

Vậy x=3

16 tháng 10 2017

b) ta có: Đặt :\(\sqrt[3]{x-2}=a;\)    Đk: \(x\ge-1\)

                \(\sqrt{x+1}=b;b\ge0\)

ta có:\(\hept{\begin{cases}a+b=3\\a^3-b^2=-3\end{cases}}\)

đến đây dùng pp thế là đc rồi nhé!

8 tháng 12 2018

Chiều mk lm cho

Đang dùng đt

8 tháng 12 2018

Ta có:

\(\sqrt{x^2-2018x+2018}+\sqrt{x^2-1009x+1009}=2x\)

\(\Leftrightarrow x-\sqrt{\left(2018x-2018\right)}+x-\sqrt{\left(1009x-1009\right)}=2x\)

\(\Leftrightarrow2x-\sqrt{\left(2018x-2018\right)}-\sqrt{\left(1009x-1009\right)}=2x\)

\(\Leftrightarrow\sqrt{\left(2018x\right)-2018}+\sqrt{\left(1009x-1009\right)}=0\)

\(\Leftrightarrow\sqrt{\left(2018x-2018\right)}=\sqrt{\left(1009x-1009\right)}=0\)

\(\Leftrightarrow2018x-2018=1009x-1009=0\Leftrightarrow x=1\)

3 tháng 11 2018

\(\frac{1}{\sqrt{x+1}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+...+\frac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}+\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+2}+\sqrt{x+3}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{\left(\sqrt{x+2019}+\sqrt{x+2020}\right)\left(\sqrt{x+2020}-\sqrt{x+2019}\right)}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{x+2-x-1}+\frac{\sqrt{x+3}-\sqrt{x+2}}{x+3-x-2}+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{x+2020-x-2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+3}-\sqrt{x+2}+...+\sqrt{x+2020}-\sqrt{x+2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}-\sqrt{x+1}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}=11+\sqrt{x+1}\)

\(\Leftrightarrow\)\(x+2020=121+22\sqrt{x+1}+x+1\)

\(\Leftrightarrow\)\(22\sqrt{x+1}=1898\)

\(\Leftrightarrow\)\(\sqrt{x+1}=\frac{949}{11}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=\frac{900601}{121}\\x+1=\frac{-900601}{121}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{900480}{121}\\x=\frac{-900722}{121}\end{cases}}\)

Chúc bạn học tốt ~ 

PS : sai thì thui nhá 

3 tháng 11 2018

Bài của bạn Quân làm đúng ùi nhưng mà căn thì không ra số âm nhé!

1 tháng 2 2020

xét x=y,x>y và x<y chú ý tới điều kiện x,y thuộc -1;1 nữa