\(\sqrt{1-2x^2}=x-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

\(TXD:\hept{\begin{cases}x\supseteq1\\-\sqrt{\frac{1}{2}}\subseteq x\subseteq\sqrt{\frac{1}{2}}\end{cases}}\)

\(\sqrt{1-2x^2}^2=\left(x-1\right)^2\)

<=> \(1-2x^2=x^2-2x+1\)

\(3x^2-2x=0\)

\(x\left(3x-2\right)=0\orbr{\begin{cases}x=0\left(KTM\right)\\x=\frac{2}{3}\left(TM\right)\end{cases}}\)

\(Vậy\)\(x=\frac{2}{3}\)\(là\)\(nghiệm\)\(phương\)\(trình\).

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

nếu vế phải là \(2\sqrt{2}\)thì làm như này: 

Ta có: \(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)

\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\) (bình phương cả 2 vế rùi khai triển dựa trên hằng đẳng thức)

\(\Leftrightarrow2x+2x-2=8\Leftrightarrow4x=10\Leftrightarrow x=\frac{2}{5}\)

4 tháng 6 2019

Bình phương cả 2 vế rồi đặt ẩn phụ là ra

5 tháng 6 2019

\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)(ĐK:\(x>\frac{1}{2}\))

\(\Leftrightarrow x^2+2x+2x-1+2\sqrt{\left(x^2+2x\right)\left(2x-1\right)}=3x^2+4x+1\)(BP 2 vế)

\(\Leftrightarrow2\sqrt{2x^3-x^2+4x^2-2x}=2x^2+2\)

\(\Leftrightarrow\sqrt{2x^3+2x+3x^2+3-4x-3}=x^2+1\)

Đặt \(x^2+1=t\)

pt\(\Leftrightarrow\sqrt{2xt+3t-\left(4x+3\right)}=t\)

\(\Leftrightarrow2xt+3t-4x-3=t^2\)

\(\Leftrightarrow t^2-t\left(2x+3\right)+4x+3=0\)

\(\Delta=\left(2x+3\right)^2-4.\left(4x+3\right)=4x^2+12x+9-16x-12=4x^2-4x-3\)

\(\hept{\begin{cases}t_1=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\\t_2=\frac{2x+3+\sqrt{4x^2-4x-3}}{2}\end{cases}}\)

TH1:\(t=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\)

\(\Rightarrow2x^2+2=2x+3-\sqrt{4x^2-4x-3}\)

\(\Leftrightarrow2x^2+2=2x+3-\sqrt{4x^2+4x-8x-3}\)

\(\Leftrightarrow2t=2x+3-\sqrt{4t-8x-3}\)

Giải ra rồi thay TH2

29 tháng 10 2018

ĐKXĐ:\(x\ge\frac{1}{2}\)

Khi đó pt đã cho 

\(\Leftrightarrow x-\sqrt{2x-1}+x+\sqrt{2x-1}\)+\(2\sqrt{\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)}=8\)

\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\)

\(\Leftrightarrow x+\sqrt{\left(x-1\right)^2}=4\)

\(\Leftrightarrow x+|x-1|=4\)     (1)

TH1:\(\frac{1}{2}\le x< 1\)

Khi đó pt (1)\(\Leftrightarrow x+1-x=4\)

                 \(\Leftrightarrow1=4\)(Vô lý)

TH2 :x\(\ge1\)

Khi đó pt (1) \(\Leftrightarrow x+x-1=4\)

\(\Leftrightarrow2x=5\)

\(\Leftrightarrow x=\frac{5}{2}\)(tm ĐKXĐ)

Vậy pt đã cho có tập nghiệm S=(\(\frac{5}{2}\))

29 tháng 10 2018

ĐKXĐ : \(x\ge\frac{1}{2}\)

\(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)

\(\Leftrightarrow\)\(\left(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}\right)^2=\left(2\sqrt{2}\right)^2\)

\(\Leftrightarrow\)\(x-\sqrt{2x-1}+2\sqrt{\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)}+x+\sqrt{2x-1}=8\)

\(\Leftrightarrow\)\(x+\sqrt{x^2-2x+1}=4\)

\(\Leftrightarrow\)\(x+\left|x-1\right|=4\)

+) Với \(\hept{\begin{cases}x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có : 

\(x+x-1=4\)

\(\Leftrightarrow\)\(x=\frac{5}{2}\) ( thỏa mãn ) 

Với \(\hept{\begin{cases}x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 1\end{cases}\Leftrightarrow}x< 0}\) ta có : 

\(-x-x+1=4\)

\(\Leftrightarrow\)\(x=\frac{-3}{2}\) ( ko thỏa mãn ĐKXĐ ) 

Vậy \(x=\frac{5}{2}\)

Chúc bạn học tốt ~ 

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}=1\)

Mà \(\sqrt{\left(x+1\right)^2}+\sqrt{\left(x^2-1\right)^2+1}\ge1\)

nên dấu "=" <=> x = -1

16 tháng 7 2019

\(\sqrt{x^2+2x+1}+\sqrt{x^4-2x^2+2}=1\)

<=> \(\sqrt{x^2+2x+1}=1-\sqrt{x^4-2x^2+2}\)

<=> \(\left(\sqrt{x^2+2x+1}\right)^2=\left(1-\sqrt{x^4-2x^2+2}\right)^2\)

<=> x2 + 2x + 1 = x4 - 2x2 + 3 - 2\(\sqrt{x^4-2x^2+2}\)

<=> x2 + 2x + 1 - (x4 - 2x) = -2\(\sqrt{x^4-2x^2+2}\) - (x4 - 2x)

<=> -x4 + 3x2 + 1 = -2\(\sqrt{x^4-2x^2+2}+3\)

<=> -x4 + 3x+ 1 - 3 = -2\(\sqrt{x^4-2x^2+2}\)

<=> (-x4 + 3x2 - 2)2 = (-2\(\sqrt{x^4-2x^2+2}\))2

<=> x8 - 6x6 - 4x5 + 13x4 + 12x3 - 8x2 - 8x + 4 = 4x4 - 8x2 + 8

<=> x = -1

=> x = -1

11 tháng 4 2017

\(\sqrt{1-2x}+\sqrt{1+2x}\ge2-x^2\)

Điều kiện: \(-\frac{1}{2}\le x\le\frac{1}{2}\)

Với điều kiện này thì cả 2 vế đều dương. Bình phương 2 vế ta được.

\(\left(\sqrt{1-2x}+\sqrt{1+2x}\right)^2\ge\left(2-x^2\right)^2\)

\(\Leftrightarrow2\sqrt{\left(1-2x\right)\left(1+2x\right)}\ge x^4-4x^2+2\)

\(\Leftrightarrow\left(2\sqrt{\left(1-2x\right)\left(1+2x\right)}\right)^2\ge\left(x^4-4x+2\right)^2\)

 \(\Leftrightarrow x^8-8x^6+20x^4\le0\)

\(\Leftrightarrow x^4\left(x^4-8x^2+20\right)\le0\)

Dễ thấy x4 - 8x2 + 20 > 0

\(\Rightarrow x^4\le0\)

\(\Rightarrow x=0\)

Vậy nghiệm của bất phương trình là: \(x=0\) 

11 tháng 4 2017

Ta có \(\left(2-x^2\right)^2< =\left(\sqrt{1-2x}+\sqrt{1+2x}\right)^2< =2\left(\sqrt{1-2x}^2+\sqrt{1+2x}^2\right)=4\)

=>  \(2-x^2< =2\)

Luôn đúng với mọi x

13 tháng 8 2017

1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v