\(Sin^4\left(\dfrac{x}{2}\right)-Sin^2\dfrac{x}{2}\left(Sinx+3\right)+Sinx+2=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

- Đặt \(\left\{{}\begin{matrix}\sin^2\dfrac{x}{2}=a\\\sin x+3=b\end{matrix}\right.\)

\(PTTT:a^2-ab+b-1=0\)

\(\Leftrightarrow-b\left(a-1\right)+\left(a-1\right)\left(a+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+1-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a-b=-1\end{matrix}\right.\)

- Thay lại vào phương trình ta được :\(\left[{}\begin{matrix}\sin^2\dfrac{x}{2}=1\\\sin^2\dfrac{x}{2}-\sin x-3=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin^2\dfrac{x}{2}=1\\\dfrac{1-\cos x}{2}-\sin x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin^2\dfrac{x}{2}=1\\\cos x+2\sin x=-3\end{matrix}\right.\)

Thấy : \(-\sqrt{5}\le2\sin x+\cos x\le\sqrt{5}\)

\(\Rightarrow2\sin x+\cos x=-3\left(L\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin\dfrac{x}{2}=1\\\sin\dfrac{x}{2}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=\dfrac{\pi}{2}+k2\pi\\\dfrac{x}{2}=-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k4\pi\\x=-\pi+k4\pi\end{matrix}\right.\)\(\left(K\in Z\right)\)

Vậy ....

 

14 tháng 8 2017

a, \(sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2cos^2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2\cdot\left[1+cos2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)\right]=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-1-cos\left(\dfrac{\pi}{2}-x\right)=0\)

\(\Leftrightarrow sin\dfrac{s}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x-sinx=0\)

\(\Leftrightarrow sinx\cdot\left(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\text{ (1) }\\sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx=0\Leftrightarrow x=k\pi\left(k\in Z\right)\)

(2) : \(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-cos\dfrac{x}{2}\cdot2sin\dfrac{x}{2}\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot cos^2\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot\left(1-sin^2\dfrac{x}{2}\right)-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}+2sin^3\dfrac{x}{2}-1=0\)

\(\Leftrightarrow2sin^3\dfrac{x}{2}-sin\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}=1\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\pi+k4\pi\left(k\in Z\right)\)

14 tháng 8 2017

b, \(tanx-3cotx=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cos}{sinx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{sinx-cosx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow sin^2x-3cos^2x=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx-\sqrt{3}\cdot cosx\right)\cdot\left(sinx+\sqrt{3}\cdot cosx\right)=4\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx+\sqrt{3}\cdot cosx\right)\cdot\left[\left(sinx-\sqrt{3}\cdot cosx\right)-4sinx\cdot cosx\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}\cdot cosx=0\text{ (1) }\\sinx-\sqrt{3}\cdot cosx-4sinx\cdot cosx=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx+\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=0\)

\(\Leftrightarrow cos\dfrac{\pi}{3}\cdot sinx+sin\dfrac{\pi}{3}\cdot cosx=0\)

\(\Leftrightarrow sin\cdot\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\Leftrightarrow x=\dfrac{-\pi}{3}+k\pi\left(k\in Z\right)\)

(2) : \(sinx-\sqrt{3}cosx-4sinx\cdot cosx=0\)

\(\Leftrightarrow sinx-\sqrt{3}cos=2sin2x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cos2=sin2x\)

\(\Leftrightarrow cos\dfrac{\pi}{3}-sinx-sin\dfrac{\pi}{3}\cdot cosx=sin2x\)

\(\Leftrightarrow sin\cdot\left(x-\dfrac{\pi}{3}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=2x+k2\pi\\x-\dfrac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\left(k\in Z\right)\end{matrix}\right.\)

11 tháng 7 2018

\(1+\sin\dfrac{x}{2}\sin x-\cos\dfrac{x}{2}\sin^2x=2\cos^2\left(\dfrac{\Pi}{4}-\dfrac{x}{2}\right)\)

\(\Leftrightarrow1+\sin\dfrac{x}{2}\sin x-\cos\dfrac{x}{2}\sin^2x=2\left(\dfrac{\sqrt{2}}{2}\cos\dfrac{x}{2}+\dfrac{\sqrt{2}}{2}\sin\dfrac{x}{2}\right)^2\)

\(\Leftrightarrow1+2\sin^2\dfrac{x}{2}\cos\dfrac{x}{2}-\cos\dfrac{x}{2}\left(2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\right)^2=1+2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\)

\(\Leftrightarrow2\sin^2\dfrac{x}{2}\cos\dfrac{x}{2}-4\cos^3\dfrac{x}{2}\sin^2\dfrac{x}{2}-2\sin\dfrac{x}{2}\cos\dfrac{x}{2}=0\)

\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\left(\sin\dfrac{x}{2}-2\sin\dfrac{x}{2}\cos^2\dfrac{x}{2}-1\right)=0\)

\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}\left(\sin\dfrac{x}{2}-2\sin\dfrac{x}{2}\left(1-\sin^2\dfrac{x}{2}\right)-1\right)=0\)

\(\Leftrightarrow2\sin\dfrac{x}{2}\cos\dfrac{x}{2}.\left(\sin\dfrac{x}{2}-1\right)\left(2\sin^2\dfrac{x}{2}+2\sin\dfrac{x}{2}+1\right)=0\)