Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=cos3x\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos3x\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=3x+k2\pi\\x+\frac{\pi}{3}=-3x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)
d/
\(\Leftrightarrow\frac{1}{2}sin3x-\frac{\sqrt{3}}{2}cos3x=sin2x\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{3}\right)=sin2x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{3}=2x+k2\pi\\3x-\frac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)
a/
\(\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{6}\right)\)
\(\Rightarrow x+\frac{\pi}{3}=\pi-x-\frac{\pi}{6}+k2\pi\)
\(\Rightarrow x=\frac{\pi}{4}+k\pi\)
b/
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=sin\frac{\pi}{12}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=sin\frac{\pi}{12}\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{\pi}{12}+k2\pi\\x+\frac{\pi}{6}=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
a.\(\frac{k\Pi}{2}+\frac{\alpha}{2}\)
b.\(\left\{{}\begin{matrix}x=\frac{1}{4}arcsin\left(\frac{1}{3}\right)+\frac{k\Pi}{2}-\frac{1}{8}\\x=\Pi-\frac{1}{4}arcsin\left(\frac{1}{3}\right)+\frac{k\Pi}{2}-\frac{1}{8}\end{matrix}\right.\)
c/
\(\Leftrightarrow\sqrt{3}sin3x-cos3x=sin2x-\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin\left(2x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=2x-\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{6}=\pi-2x+\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
e/
\(\Leftrightarrow\frac{1}{2}sin8x-\frac{\sqrt{3}}{2}cos8x=\frac{\sqrt{3}}{2}sin6x+\frac{1}{2}cos6x\)
\(\Leftrightarrow sin\left(8x-\frac{\pi}{3}\right)=sin\left(6x+\frac{\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}8x-\frac{\pi}{3}=6x+\frac{\pi}{6}+k2\pi\\8x-\frac{\pi}{3}=\pi-6x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{28}+\frac{k\pi}{7}\end{matrix}\right.\)
\(sin3x-sinx+sin2x=0\)
\(\Leftrightarrow2cos2x.sinx+2sinx.cosx=0\)
\(\Leftrightarrow sinx\left(cos2x+cosx\right)=0\)
\(\Leftrightarrow2sinx.cos\frac{3x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=0\\cos\frac{x}{2}=0\\cos\frac{3x}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{3x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\pi+k2\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(cosx+cos3x+cos2x+cos4x=0\)
\(\Leftrightarrow2cos2x.cosx+2cos3x.cosx=0\)
\(\Leftrightarrow cosx\left(cos2x+cos3x\right)=0\)
\(\Leftrightarrow2cosx.cos\frac{5x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos\frac{x}{2}=0\\cos\frac{5x}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\end{matrix}\right.\)
a.
\(cos\left(3x-\frac{\pi}{6}\right)=sin\left(2x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow cos\left(3x-\frac{\pi}{6}\right)=cos\left(\frac{\pi}{6}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=\frac{\pi}{6}-2x+k2\pi\\3x-\frac{\pi}{6}=2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\cos3x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne\frac{1}{2}\end{matrix}\right.\)
\(tan3x-tanx=0\)
\(\Leftrightarrow\frac{sin3x}{cos3x}-\frac{sinx}{cosx}=0\)
\(\Leftrightarrow sin3x.cosx-cos3x.sinx=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow2sinx.cosx=0\)
\(\Leftrightarrow sinx=0\Leftrightarrow x=k\pi\)
c.
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{2\pi}{5}\right)=\frac{1}{2}-\frac{1}{2}cos\left(4x+\frac{8\pi}{5}\right)\)
\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=-cos\left(4x+\frac{3\pi}{5}+\pi\right)\)
\(\Leftrightarrow cos\left(2x-\frac{2\pi}{5}\right)=cos\left(4x+\frac{3\pi}{5}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+\frac{3\pi}{5}=2x-\frac{2\pi}{5}+k2\pi\\4x+\frac{3\pi}{5}=\frac{2\pi}{5}-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
d.
\(\Leftrightarrow cos^2\left(2x-1\right)=0\)
\(\Leftrightarrow cos\left(2x-1\right)=0\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{1}{2}+\frac{k\pi}{2}\)
\(\Leftrightarrow sin3x.cosx+cos3x.sinx-2\left(sin^23x+cos^23x\right)+cos3x=0\)
\(\Leftrightarrow sin4x+cos3x-2=0\)
Do \(\left\{{}\begin{matrix}sin4x\le1\\cos3x\le1\end{matrix}\right.\) \(\Rightarrow sin4x+cos3x-2\le0\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}sin4x=1\\cos3x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=\frac{\pi}{2}+k2\pi\\3x=n2\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{2}\\x=\frac{n2\pi}{3}\end{matrix}\right.\)
Biểu diễn trên đường tròn lượng giác thì 2 tập nghiệm này ko có điểm chung
Vậy pt vô nghiệm