Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y^2+4^x+2y-2^{x+1}+2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(4^x-2^{x+1}+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}\)
\(\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)
\(\Leftrightarrow\frac{x^2+4x+4+2}{x+2}+\frac{x^2+16x+64+8}{x+8}=\frac{x^2+8x+16+4}{x+4}+\frac{x^2+12x+36+6}{x+6}\)
\(\Leftrightarrow2x+10+\frac{2}{x+2}+\frac{8}{x+8}=2x+10+\frac{4}{x+4}+\frac{6}{x+6}\)
\(\Leftrightarrow\frac{2}{x+2}+\frac{8}{x+8}=\frac{4}{x+4}+\frac{6}{x+6}\)
Tới đây quy đồng làm tiếp nhé
a, Đặt \(x^2-4x+8=a\left(a>0\right)\)
\(\Rightarrow a-2=\frac{21}{a+2}\)
\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)
Thay vào là ra
b) ĐK: \(y\ne1\)
bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)
<=> \(\frac{3y^2-3y}{1-y^3}\le0\)
\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)
\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)
vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
nên bpt <=> \(y\ge0\)
a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)
\(y^2+4^x+2y-2^{x+1}+2=0\)
\(\Leftrightarrow y^2+4^x+2y-2^x.2+2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(2^x\right)^2-2.2^x+1=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\2^x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\)
Vậy.............................
\(y^2+4^x+2y-2^{x+1}+2=0\)
\(\Leftrightarrow y^2+2y+1+4^x-2^x\cdot2+1=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\2^x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2^x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\)
pt <=> (4^x - 2^x+1 + 1) + (y^2+2y+1) = 0
<=> (2^x - 1)^2 + (y+1)^2 = 0
<=> 2^x - 1 = 0 và y+1 = 0
<=> 2^x=1=2^0 hoặc y=-1
<=> x=0 hoặc y=-1
Vậy pt có tập nghiệm S = {(0;-1)}
Tk mk nha
bạn thay từ hoăc thanh và nhé